

СОСТАВ ПРОЕКТА

		СХЕМА ТЕПЛОСНАБЖЕНИЯ
		Показатели существующего и перспективного спроса на
	1	тепловую энергию (мощность) и теплоноситель в
		установленных границах территории поселения
		Существующие и перспективные балансы тепловой мощности
	2	источников тепловой энергии и тепловой нагрузки
		потребителей
	3	Существующие и перспективные балансы теплоносителя
	4	Основные положения мастер-плана развития систем
		теплоснабжения поселения
Книга I		Предложения по строительству, реконструкции, техническому
	5	перевооружению и (или) модернизации источников тепловой
		энергии
	6	Предложения по строительству, реконструкции, техническому
	0	перевооружению и (или) модернизации тепловых сетей
		Предложения по переводу открытых систем теплоснабжения
	7	(горячего водоснабжения) в закрытые системы горячего
		водоснабжения
	8	Перспективные топливные балансы
	9	Инвестиции в строительство, реконструкцию, техническое
		перевооружение и (или) модернизацию
	10	Решение о присвоении статуса единой
	10	теплоснабжающей организации (организациям)
	11	Решения о распределении тепловой нагрузки между
		источниками тепловой энергии
	12	Решение по бесхозяйным тепловым сетям
		Синхронизация схемы теплоснабжения со схемой
	10	газоснабжения и газификации субъекта Российской
	13	Федерации и (или) поселения, схемой и программой
		развития электроэнергетики, а также со схемой
		водоснабжения и водоотведения поселения
	14	Индикаторы развития систем теплоснабжения
	15	поселения
	15	Ценовые (тарифные) последствия
		ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ
	1	Существующее положение в сфере производства, передачи и
		потребления тепловой энергии для целей теплоснабжения
	2	Существующее и перспективное потребление тепловой энергии на цели теплоснабжения
		-
	3	Существующие и перспективные балансы тепловой
		мощности источников тепловой энергии и тепловой нагрузки потребителей
		That pyskit not poolitisateri

	4	Мастер-план развития систем теплоснабжения поселения
Книга II		Существующие и перспективные балансы
Книга п	_	производительности водоподготовительных
	5	установок и максимального
		потребления теплоносителя теплопотребляющими
		установками потребителей, в том числе в аварийных режимах
		Предложения по строительству, реконструкции и
	6	техническому перевооружению источников тепловой энергии
	7	Предложения по строительству и реконструкции тепловых
	,	сетей
	8	Предложения по переводу открытых систем теплоснабжения
	o	(горячего водоснабжения) в закрытые системы горячего
		водоснабжения
	9	Перспективные топливные балансы
	10	Оценка надежности теплоснабжения
	11	Обоснование инвестиций в строительство, реконструкцию,
	11	техническое перевооружение и (или) модернизацию
	12	Индикаторы развития систем теплоснабжения поселения
	13	Ценовые (тарифные) последствия
	14	Реестр единых теплоснабжающих организаций
	15	Реестр мероприятий схемы теплоснабжения
	16	Замечания и предложения к проекту схемы теплоснабжения
		Сводный том изменений, выполненных в доработанной и (или)
	17	актуализированной схеме теплоснабжения

СОДЕРЖАНИЕ

	ВВЕДЕНИЕ	6
	Термины и определения	8
1	СУЩЕСТВУЮЩЕЕ ПОЛОЖЕНИЕ В СФЕРЕ ПРОИЗВОДСТВА,	
	ПЕРЕДАЧИ И ПОТРЕБЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ДЛЯ ЦЕЛЕЙ	
	ТЕПЛОСНАБЖЕНИЯ	14
1.1	Функциональная структура теплоснабжения	14
1.2	Источники тепловой энергии	16
1.3	Тепловые сети, сооружения на них	20
1.4	Зоны действия источников тепловой энергии	29
1.5	Тепловые нагрузки потребителей тепловой энергии, групп потребителей	
	тепловой энергии	30
1.6	Балансы тепловой мощности и тепловой нагрузки	32
1.7	Балансы теплоносителя	35
1.8	Топливные балансы источников тепловой энергии и система обеспечения	
	топливом	37
1.9	Надежность теплоснабжения	38
1.10	Технико-экономические показатели теплоснабжающих и теплосетевых	
4.44	организаций	39
1.11	Цены (тарифы) в сфере теплоснабжения	39
1.12	Описание существующих технических и технологических проблем в	
	системах теплоснабжения поселения	43
2	СУЩЕСТВУЮЩЕЕ И ПЕРСПЕКТИВНОЕ ПОТРЕБЛЕНИЕ ТЕПЛОВОЙ ЭНЕРГИИ НА ЦЕЛИ ТЕПЛОСНАБЖЕНИЯ	44
3	СУЩЕСТВУЮЩЕЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ	
	МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ	
4	НАГРУЗКИ ПОТРЕБИТЕЛЕЙ	47
4	МАСТЕР-ПЛАН РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ ПОСЕЛЕНИЯ	49
5	СУЩЕСТВУЮЩЕЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ	
	производительности водоподготовительных установок и	
	МАКСИМАЛЬНОГО ПОТРЕБЛЕНИЯ ТЕПЛОНОСИТЕЛЯ	
	ТЕПЛОПОТРЕБЛЯЮЩИМИ УСТАНОВКАМИ ПОТРЕБИТЕЛЕЙ, В ТОМ ЧИСЛЕ В АВАРИЙНЫХ РЕЖИМАХ	49
6	ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ,	49
	ТЕХНИЧЕСКОМУ ПЕРЕВООРУЖЕНИЮ И (ИЛИ) МОДЕРНИЗАЦИИ	
	ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ	52
7	ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ И (ИЛИ)	
	МОДЕРНИЗАЦИИ ТЕПЛОВЫХ СЕТЕЙ	60
8	ПРЕДЛОЖЕНИЯ ПО ПЕРЕВОДУ ОТКРЫТЫХ СИСТЕМ	
	ТЕПЛОСНАБЖЕНИЯ (ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ) В ЗАКРЫТЫЕ	67
9	СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ	67
		67
10	ОЦЕНКА НАДЕЖНОСТИ ТЕПЛОСНАБЖЕНИЯ	69
11	ОБОСНОВАНИЕ ИНВЕСТИЦИЙ В СТРОИТЕЛЬСТВО, РЕКОНСТРУКЦИЮ, ТЕХНИЧЕСКОЕ ПЕРЕВООРУЖЕНИЕ И (ИЛИ)	
	МОДЕРНИЗАЦИЮ	73
12	ИНДИКАТОРЫ РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ	
	поселения	74

13	ЦЕНОВЫЕ (ТАРИФНЫЕ) ПОСЛЕДСТВИЯ	76
14	ОБОСНОВАНИЕ ПРЕДЛОЖЕНИЯ ПО ОПРЕДЕЛЕНИЮ ЕДИНОЙ	
	ТЕПЛОСНАБЖАЮЩЕЙ ОРГАНИЗАЦИИ	77
15	РЕЕСТР ЕДИНЫХ ТЕПЛОСНАБЖАЮЩИХ ОРГАНИЗАЦИЙ	84
16	РЕЕСТР МЕРОПРИЯТИЙ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ	85
17	ЗАМЕЧАНИЯ И ПРЕДЛОЖЕНИЯ К ПРОЕКТУ СХЕМЫ	
	ТЕПЛОСНАБЖЕНИЯ	85

ВВЕДЕНИЕ

Разработка схемы теплоснабжения выполнена в соответствии с требованиями Федерального закона от 27.07.2010 года № 190-ФЗ «О теплоснабжении», Постановления Правительства Российской Федерации от 22.02.2012 года №154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».

Схема теплоснабжения разрабатывается в целях удовлетворения спроса на тепловую энергию (мощность) и теплоноситель, обеспечения надежного теплоснабжения наиболее экономичным способом при минимальном воздействии на окружающую среду, а так же экономического стимулирования развития систем теплоснабжения и внедрения энергосберегающих технологий.

Схема теплоснабжения разработана на основе следующих принципов:

- обеспечение безопасности и надежности теплоснабжения потребителей в соответствии с требованиями технических регламентов;
- обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных действующими законами;
- обеспечение приоритетного использования комбинированной выработки тепловой и электрической энергии для организации теплоснабжения с учетом ее экономической обоснованности;
- соблюдение баланса экономических интересов теплоснабжающих организаций и потребителей;
- минимизации затрат на теплоснабжение в расчете на каждого потребителя в долгосрочной перспективе;
 - минимизации вредного воздействия на окружающую среду;
- обеспечение не дискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;
- согласованности схемы теплоснабжения с иными программами развития сетей инженерно-технического обеспечения, а также с программой газификации;
- обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при

осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала.

Техническая база для разработки схем теплоснабжения

- генеральный план поселения и муниципального района;
- эксплуатационная документация (расчетные температурные графики источников тепловой энергии, данные по присоединенным тепловым нагрузкам потребителей тепловой энергии, их видам и т.п.);
- конструктивные данные по видам прокладки и типам применяемых теплоизоляционных конструкций, сроки эксплуатации тепловых сетей, конфигурация;
- данные технологического и коммерческого учета потребления топлива,
 отпуска и потребления тепловой энергии, теплоносителя;
- документы по хозяйственной и финансовой деятельности (действующие нормативы, тарифы и их составляющие, договора на поставку топливноэнергетических ресурсов (ТЭР) и на пользование тепловой энергией, водой, данные потребления ТЭР на собственные нужды, по потерям ТЭР и т.д.);
- статистическая отчетность организации о выработке и отпуске тепловой энергии и использовании ТЭР в натуральном и стоимостном выражении.

Термины и определения

- тепловая энергия энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);
- зона действия системы теплоснабжения территория поселения, городского округа или ее часть, границы которой устанавливаются по наиболее удаленным точкам подключения потребителей к тепловым сетям, входящим в систему теплоснабжения;
- источник тепловой энергии устройство, предназначенное для производства тепловой энергии;
- зона действия источника тепловой энергии территория поселения, городского округа или ее часть, границы которой устанавливаются закрытыми секционирующими задвижками тепловой сети системы теплоснабжения;
- установленная мощность источника тепловой энергии сумма номинальных тепловых мощностей всего принятого по акту ввода в эксплуатацию оборудования, предназначенного для отпуска тепловой энергии потребителям на собственные и хозяйственные нужды;
- располагаемая мощность источника тепловой энергии величина, равная установленной мощности источника тепловой энергии за вычетом объемов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продленном техническом ресурсе (снижение параметров пара перед турбиной, отсутствие рециркуляции в пиковых водогрейных котлоагрегатах и др.);
- мощность источника тепловой энергии нетто величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки на собственные и хозяйственные нужды;
- теплосетевые объекты объекты, входящие в состав тепловой сети и обеспечивающие передачу тепловой энергии от источника тепловой энергии до теплопотребляющих установок потребителей тепловой энергии;

- теплопотребляющая установка устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;
- тепловая сеть совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;
- тепловая мощность (далее мощность) количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;
- тепловая нагрузка количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;
- теплоснабжение обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;
- потребитель тепловой энергии (далее также потребитель) лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;
- инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, программа финансирования мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, капитальному ремонту, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;
- теплоснабжающая организация организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой

энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

- передача тепловой энергии, теплоносителя совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;
- коммерческий учет тепловой энергии, теплоносителя (далее также коммерческий учет) установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;
- система теплоснабжения совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;
- режим потребления тепловой энергии процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;
- надежность теплоснабжения характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;
- регулируемый вид деятельности в сфере теплоснабжения вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

- а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;
 - б) оказание услуг по передаче тепловой энергии, теплоносителя;
- в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;
- орган регулирования тарифов в сфере теплоснабжения (далее также орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти В области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области регулирования (тарифов) государственного цен либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;
- схема теплоснабжения документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;
- резервная тепловая мощность тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;
- топливно-энергетический баланс документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов

между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

- тарифы в сфере теплоснабжения система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;
- точка учета тепловой энергии, теплоносителя (далее также точка учета) место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;
- комбинированная выработка электрической и тепловой энергии -режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;
- единая теплоснабжающая организация в системе теплоснабжения (далее единая теплоснабжающая организация) теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;
- бездоговорное потребление тепловой энергии потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных к системе теплоснабжения с нарушением установленного порядка подключения, либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после

предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

- радиус эффективного теплоснабжения максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;
- плата за подключение к системе теплоснабжения плата, которую вносят строительство осуществляющие строения, лица, здания, сооружения, подключаемых к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если собой данная реконструкция влечет за увеличение тепловой реконструируемых здания, строения, сооружения (далее также - плата за подключение);
- живучесть способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.
- элемент территориального деления территория поселения, городского округа или ее часть, установленная по границам административно-территориальных единиц;
- расчетный элемент территориального деления территория поселения, городского округа или ее часть, принятая для целей разработки схемы теплоснабжения в неизменяемых границах на весь срок действия схемы теплоснабжения.
- качество теплоснабжения совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя.

1. СУЩЕСТВУЮЩЕЕ ПОЛОЖЕНИЕ В СФЕРЕ ПРОИЗВОДСТВА, ПЕРЕДАЧИ И ПОТРЕБЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ДЛЯ ЦЕЛЕЙ ТЕПЛОСНАБЖЕНИЯ

1.1 Функциональная структура теплоснабжения

На территории муниципального образования Сунятсенское сельское поселение действует одна теплоснабжающая организация филиал ""Михайловский" КГУП "Примтеплоэнерго"".

В таблице 1.1 представлены договорные отношения в сфере теплоснабжения.

Таблица 1.1 Договорные отношения в сфере теплоснабжения

	-		
_	Теплов	ые сети	Конечный
Теплоисточник	Магистральные сети	Квартальные сети	потребитель
	/09, № 1/10		
На балансе у	На балансе у	На балансе у	Жилой фонд
администрации	администрации	администрации	жилои фонд
арендует филиал	арендует филиал	арендует филиал	Объекты
""Михайловский"	""Михайловский"	""Михайловский"	
КГУП	КГУП	КГУП	образования,
"Примтеплоэнерго""	"Примтеплоэнерго""	"Примтеплоэнерго""	здравоохранения
	Котельная КГОБУ Пе	рвомайской КШИ	
На балансе КГОБУ "			
Первомайская			КГОБУ "
специальная	КГОБУ "		Первомайская
(коррекционная)	Первомайская		специальная
общеобразовательна	специальная		(коррекционная)
я школа-интернат "	(коррекционная)	-	общеобразовател
закупка тепла у	общеобразовательная		ьная школа-
""Михайловский"	школа-интернат "		интернат "
КГУП			интернат
"Примтеплоэнерго""			

^{*}в настоящее время решается вопрос о передаче котельной КГОБУ Первомайской КШИ на баланс филиала ""Михайловский" КГУП "Примтеплоэнерго""

Зоны действия источников тепловой энергии муниципального образования Сунятсенское сельское поселение представлена на рис.1.1, 1.2, 1.3.

В муниципальном образовании Сунятсенское сельское поселение теплоснабжение малоэтажных и индивидуальных жилых застроек, а также отдельных зданий коммунально-бытовых и промышленных потребителей, не подключенных к центральному теплоснабжению, осуществляется от индивидуальных источников тепловой энергии.

Рис. 1.1 – Зона действия теплоснабжения котельной № 1/9 села Первомайское



Рис. 1.2 — Зона действия теплоснабжения котельной № 1/10 села Первомайское

Рис. 1.3 – Зона действия теплоснабжения котельной КГОБУ Первомайской КШИ

1.2 Источники тепловой энергии

В муниципальном образовании Сунятсенское сельское поселение центральное теплоснабжение осуществляется от трех источников тепловой энергии:

Централизованная Котельная № 1/09 расположенная в селе Первомайское, работающая на угле с установленной мощностью 2,85 Гкал/ч;

Централизованная Котельная № 1/10 расположенная в селе Первомайское, работающая на угле с установленной мощностью 0,688 Гкал/ч;

Индивидуальная Котельная КГОБУ Первомайской КШИ расположенная в селе Первомайское, работающая на угле.

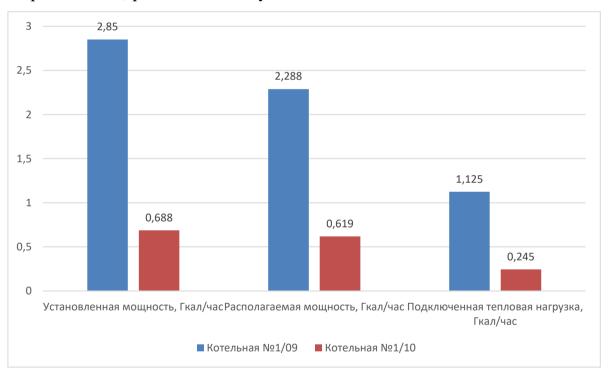


Рис. 1.4 — Распределение мощностей централизованных источников тепловой энергии

В котельной № 1/09 села Первомайское установлены три водогрейных котла марки КВм; в котельной № 1/10 села Первомайское установлены два водогрейных котла марки «Прометей-автомат» мощностью по 400 кВт; в котельной КГОБУ Первомайской КШИ установлены три водогрейных котла марки «Универсал-5М».

Характеристики основного оборудования приведены в таблице 1.2.

Таблица 1.2 – Основные характеристики котлоагрегатов от централизованных котельных

Котельная,		Кол-	Год	Состояние котла (не рабочий, запрещен). Год проведения	КПД котла %	Производи тельность одного котла	Производительность котельной по паспорту
местонахождение, адрес	Тип котла	кот лов	установки котла	капитального ремонта,		вода	вода
				реконструкции котла		Гкал/ч	Гкал/ч
1	2	3	4	5	6	7	8
Котельная № 1/09	КВм-1,25	1	2018	рабочий	79,6	1,08	1,08
с.Первомайское,	КВм-1,25	1	2018	рабочий	79,6	1,08	1,08
ул.Дубковская, 36	КВм-0,8	1	2019	рабочий	82	0,69	0,69
Котельная № 1/09	Итого:	3			81	2,850	2,850
Котельная АМК №	Прометей- автомат 400кВт	1	2016	рабочий	90	0,344	0,344
1/10 с.Первомайское, ул.Гагарина, 37а	Прометей- автомат 400кВт	1	2016	рабочий	90	0,344	0,344
Котельная АМК № 1/10	Итого:	2			90	0,688	0,688

Характеристики насосного оборудования централизованных источников тепловой энергии представлены в таблице 1.3.

Таблица 1.3 – Основные характеристики насосного оборудования

Таолица 1.5	– Основные характеристі	тки пасс	CHOIO		,	
				xapa	ктеристи	ka
назначение	тип (марка)	год установки	производительность, $M^3/4$	напор, м	мощность электродвигателя, кВт	частота вращения, об/мин
	Котельная .	№ 1/09				
сетевой	КМЛ 65-160 У-3 (3шт.)	2018	30	22	5,5	3000
сетевой	КМЛ2 100-140 (2шт.)	2018	90	18	11	3000
подпит.	WiLO 50/130-3/2	2018	36	19	3	2900
подпит.	ДЖАМБО 70/50-Н-24	2018	0,07	45	1,1	
сетевой	КМЛ 2-50-200	2019	25	40	5,5	3000
	Котельная АМ	IK № 1/	10			
циркуляц.	HZ 801-DN 32 (2 шт)	2016	12	6,3	0,3	2700
сетевой	Grundfos UPS 65-120 F (2шт.)	2016	21,4	8	1,2	1450
сетевой	GRUNDFOS DK 8850 (2шт.)	2016	3,6	40	2,2	2800

Согласно информации, предоставленной заказчиком, ограничения по тепловой мощности на рассматриваемом теплоисточнике отсутствует.

Объём потребления тепловой энергии (мощности) на собственные и хозяйственные нужды и параметры тепловой мощности НЕТТО представлены в таблице 1.4.

Таблица 1.4 – Структура выработки тепловой энергии НЕТТО.

Показатель	Размерность	Котельная	Котельная
Hokusuresib	тазмерноств	№ 1/09	AMK№1/10
Произведено тепловой энергии всего за		2 127 249	(02.554
год	Гкал/год	2 136,348	602,554
Объём потребления тепловой энергии			
на собственные и хозяйственные	Гкал/год	129,824	5,485
нужды			
Тепловая энергия НЕТТО	Гкал/год	2 133,291	606,168

На источниках тепловой энергии для регулирования отпуска тепла выполнено центральное качественно-количественное по нагрузке отопления (за счет изменения температуры и объема теплоносителя в зависимости от температуры наружного воздуха).

Температурный график отпуска тепловой энергии для источников тепла расположенных на территории муниципального образования Сунятсенское сельское поселение приведен в таблицах 1.5.

Таблица 1.5 — Результаты расчета графика температур котельных Сунятсенского сельского поселения

Температурный график качествено- количественного регулирования отпуска тепла 2019-2020 год.							
котельная №	1/9	Миха	айловский т	епловой район	Мих	айловский	филиал
-	4/52			_	температура в и трубопроводе		75
температура внутр t _в	еннего в	воздуха,	18	расчетная температура в обратном трубопроводе			57
расчетная темпера воздуха	•	ужного	-29	средняя температура теплоносителя в системе отопления			66
Среднесуточная температура наружного воздуха	_		пература я в системе ения	Среднесуточна я температура наружного воздуха	_	едняя темп поносителя отоплен	в системе
tH	t1	t2	V _м ³ /ч	tH	t1	t2	Vм ³ /ч
-29	75,0	57,0	56	-10	55,1	42,6	48

-28	74,0	56,4	56	-9	54,0	41,9	48
-27	73,0	55,7	56	-8	52,9	41,3	48
-26	72,0	55,1	56	-7	51,8	40,6	48
-25	70,9	53,6	53	-6	50,6	39,9	48
-24	69,9	53,0	53	-5	49,5	39,2	48
-23	68,9	52,4	53	-4	48,4	38,5	48
-22	67,8	51,7	53	-3	47,2	37,8	48
-21	66,8	50,3	50	-2	46,1	37,1	48
-20	65,8	49,6	50	-1	44,9	36,4	48
-19	64,7	49,0	50	0	43,7	35,7	48
-18	63,7	48,4	50	1	42,5	34,5	45
-17	62,6	47,0	48	2	41,3	33,8	45
-16	61,6	46,4	48	3	40,1	33,1	45
-15	60,5	45,8	48	4	38,9	32,3	45
-14	59,4	45,1	48	5	37,7	31,5	45
-13	58,3	44,5	48	6	36,4	30,8	45
-12	57,3	43,9	48	7	35,1	30,0	45
-11	56.2	10.0	48	8	22.0		4.5
-11	56,2	43,2	48	ð	33,8	29,1	45
-11 котельная №1		,		епловой район		29,1 айловский	
котельная № продолжит	1/10 гельност	Михаі	йловский те	епловой район расчетная	Миха темпера	айловский тура в	филиал
котельная №	1/10 гельност	Михаі		епловой район расчетная подающем	Миха темпера трубоп	айловский тура в роводе	
котельная № продолжит	1/10 гельност периода реннего	Михаі ь а, Z, ч	йловский те	епловой район расчетная	Мих: темпера трубоп темпера	айловский итура в роводе итура в	филиал
котельная № продолжит отопительного температура внут	1/10 гельност периода реннего в	Михаі ь а, Z, ч воздуха,	йловский те 4752	расчетная подающем расчетная обратном теплоноси	Миха темпера трубоп темпера темпера	айловский птура в роводе птура в роводе тура	филиал 75
котельная № продолжит отопительного температура внут tempacuernas темпера	1/10 гельност периода реннего в атура на а, tн.о.	Михаі ь а, Z, ч воздуха, ружного дняя тем	4752 18 -29 пература пе в системе	расчетная подающем расчетная обратном теплоноси	Миха темпера трубопр темпера темпера теля в сыпления	айловский птура в роводе птура в роводе тура	филиал 75 57 66 сратура системе
котельная № продолжит отопительного температура внут tempacuernaя темпера воздуха Среднесуточная температура наружного	1/10 гельност периода реннего в атура на а, tн.о.	Михай ь а, Z, ч воздуха, ружного дняя тем носителя	4752 18 -29 пература пе в системе	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного	Миха темпера трубопр темпера темпера теля в сыпления	айловский итура в роводе итура в роводе итура истеме едняя темперносителя в	филиал 75 57 66 сратура системе
котельная № продолжит отопительного температура внут температ воздуха Среднесуточная температура наружного воздуха	1/10 гельност периода реннего атура на а, tн.о. сред	Михай ь а, Z, ч воздуха, ружного дняя тем носителя отопле	4752 18 -29 пература в системе ния	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного воздуха	Миха темпера трубоприментемпера темпера прения средения	айловский птура в роводе птура в роводе тура истеме едняя темпе оносителя в отоплени	филиал 75 57 66 ература системе
котельная № продолжит отопительного температура внут температура воздуха Среднесуточная температура наружного воздуха th	1/10 гельност периода реннего атура на а, tн.о. сред тепло	Михай в должного михания тем носителя отопле	4752 18 -29 пература в системе ния Vм³/ч	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного воздуха tH	Миха темпера трубопри темпера теля в сопления средения средения тепло	айловский птура в роводе птура в роводе тура истеме едняя темпе оносителя в отоплени	филиал 75 57 66 ература системе ия Vм³/ч
котельная № продолжит отопительного температура внут температура воздуха Среднесуточная температура наружного воздуха tн -29 -28 -27	1/10 гельност периода реннего ватура на а, tн.о. средтепло t1 75,0 74,0 73,0	Михай ва, Z, ч воздуха, ружного дняя тем носителя отопле t2 57,0 56,4 55,7	4752 18 -29 пература	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного воздуха tH -10 -9 -8	Миха темпера трубопр темпера теля в сопления сретепло темпера теля бателя в сопления сретепло темпера теля в сопления сретепло темпера теля в сопления сретепло темпера темпе	айловский итура в роводе итура в роводе итура истеме едняя темпе отоплени t2 42,6 41,9 41,3	филиал 75 57 66 ература системе ия Vм³/ч 17 17
котельная № продолжит отопительного температура внут температура воздуха Среднесуточная температура наружного воздуха tH29 -28 -27 -26	1/10 гельност периода реннего ватура на а, tн.о. средтепло t1 75,0 74,0 73,0 72,0	Михай ва, Z, ч воздуха, ружного дняя тем отопле t2 57,0 56,4 55,7 55,1	4752 18 -29 пература	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного воздуха tH -10 -9 -8 -8 -7	Миха темпера трубопр темпера теля в стапления сретепле 55,1 54,0 52,9 51,8	айловский атура в роводе атура в роводе атура истеме едняя темпе отоплени t2 42,6 41,9 41,3 40,6	филиал 75 57 66 сратура системе ия Vм³/ч 17 17 17
котельная № продолжит отопительного температура внут температура воздуха Среднесуточная температура наружного воздуха tH -29 -28 -27 -26 -25	1/10 гельност периода реннего ватура на а, tн.о. средтепло t1 75,0 74,0 73,0 72,0 70,9	Михай ва, Z, ч воздуха, ружного дняя тем отопле t2 57,0 56,4 55,7 55,1 53,6	4752 18 -29 пература	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного воздуха tH -10 -9 -8 -7 -6	Миха темпера трубопритемпера теля в сипления средения 55,1 54,0 52,9 51,8 50,6	айловский итура в роводе итура в роводе итура истеме едняя темпе отоплени t2 42,6 41,9 41,3 40,6 39,9	филиал 75 57 66 сратура системе ия 17 17 17 17
котельная № продолжит отопительного температура внут температура воздуха Среднесуточная температура наружного воздуха tH29 -28 -27 -26	1/10 гельност периода реннего ватура на а, tн.о. средтепло t1 75,0 74,0 73,0 72,0	Михай ва, Z, ч воздуха, ружного дняя тем отопле t2 57,0 56,4 55,7 55,1	4752 18 -29 пература	расчетная подающем расчетная обратном средняя теплоноси ото Среднесуточна я температура наружного воздуха tH -10 -9 -8 -8 -7	Миха темпера трубопр темпера теля в стапления сретепле 55,1 54,0 52,9 51,8	айловский атура в роводе атура в роводе атура истеме едняя темпе отоплени t2 42,6 41,9 41,3 40,6	филиал 75 57 66 сратура системе ия 17 17 17 17

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СУНЯТСЕНСКОЕ СЕЛЬСКОЕ ПОСЕЛЕНИЕ МИХАЙЛОВСКОГО РАЙОНА ПРИМОРСКОГО КРАЯ

-22	67,8	51,7	18	-3	47,2	37,8	17
-21	66,8	50,3	18	-2	46,1	37,1	17
-20	65,8	49,6	18	-1	44,9	36,4	17
-19	64,7	49,0	18	0	43,7	35,7	17
-18	63,7	48,4	18	1	42,5	34,5	16
-17	62,6	47,0	17	2	41,3	33,8	16
-16	61,6	46,4	17	3	40,1	33,1	16
-15	60,5	45,8	17	4	38,9	32,3	16
-14	59,4	45,1	17	5	37,7	31,5	16
-13	58,3	44,5	17	6	36,4	30,8	16
-12	57,3	43,9	17	7	35,1	30,0	16
-11	56,2	43,2	17	8	33,8	29,1	16

Температурный график котельнойрассчитан согласно максимальным расчетным тепловым нагрузкам зданий, может меняться в зависимости от фактического состояния систем теплопотребления, является основой для качественно - количественного регулирования режима отпуска тепла с коллектора котельной.

Информация о предписаниях надзорных органов по запрещению дальнейшей эксплуатации отсутствуют.

1.3 Тепловые сети, сооружения на них

Теплоснабжение в муниципальном образовании Сунятсенское сельское поселение осуществляется от трех котельных по трубопроводам, проложенным надземным и подземным способами, расстояния и тип прокладки трубопроводов представлены в таблице 1.6.

Таблица 1.6 – Информация по тепловой сети

таолица т.	6 – информаци				-
	Наружн.	Условный	Общая		Год ввода
Наименование	диаметр	лиаметр	протяженность	Тип	участка труб-
участка	трубопровода	проход,	труб-дов участка	прокла	да в
y lacika	на уч-ке, Дн,	проход, Dy, мм	сети в двухтр-ом	дки	эксплуатацию
	M	Dy, mm	исчислении, L, м		(перекладки)
от котельной	210	200	6.2	1	1000
до т. 1	219	200	6,2	1	1988
от т.1 до т.2	133	125	44,1	1	1988
от т.2 до т.3	133	125	24	1	1988
от т.3 до т. 4	133	125	66,8	1	1988
от т.4 до т. 5	108	100	62	1	2004
от т.5 до т. 6	76	65	47,6	1	2004
от т.6 до ж.д.					
№10 ул.	57	50	38	1	2004
Ленина					
от т.6 до т.7	57	50	7	1	2004
от т.7 до ж.д.	57	50	21	1	2004
№9 ул. Ленина	57	50	21	1	2004
от т.7 до т.7а	57	50	57,75	1	2010
от т.7а до т.7б	32	25	4,25	1	2018
от т.7б до т.7в	22	25	10	2	2010
под дорогой	32	25	10	2	2018
от т.7в до т.7г	32	25	4,25	1	2018
от т.7г до т.8	57	50	24,75	1	2010
от т.8 до	57	50	5	1	2010
здания ФАП	57	50	5	1	2010
от т.4 до т.9	76	65	28	1	2004
от т.9 до т.9а	57	50	25	1	2012
от т.9а до ж.д.					
№3 ул.	57	50	7,6	1	2012
Островского					
от т.9 до т.10	57	50	81,8	1	2017
от т.10 до т.10а	57	50	22	1	2004
от т.10а до ж.д.					
№4 ул.	57	50	10,1	1	2004
Островского			,		
1					

			ROI O I ANOHA III MM		
от т.5 до т.11	76	65	39	1	1988
от т.11 до т.12	76	65	6	1	1988
от т.12 до т.13	76	65	17	1	1988
от т.13 до т.13а	57	50	28	1	1988
от т.13а до здания д/с	57	50	0,5	1	1988
от т.13 до т.13б под дорогой	76	65	4,5	2	2013
от т.13б до т.13в	76	65	23,5	1	1988
от т.13в до т.13г под дорогой	76	65	5	2	2012
от т.13г до т.14	76	65	4	1	1988
от т.14 до т.15	76	65	7	1	1988
от т.15 до т.16	76	65	16,2	1	1988
от т.16 до ж.д. №5 ул. Ленина	57	50	2,5	1	1988
от т.16 до ж.д. №6 ул.Ленина	57	50	23	1	1988
от т.1 до т.17	76	65	51,8	1	2013
от т.17 до ж.д. №8 ул. Дубковская	57	50	3,7	1	2013
от т.17 до т.18	57	50	23	1	2013
от т.18 до ж.д. №7 ул.Дубковская	57	50	1	1	2013
от т.18 до т.18а	32	25	1,5	1	2013
от т.18а до т.19	32	25	17	1	2013
от т.19 до т.20	32	25	72,6	1	2013
от т.20 до т.21	32	25	3,1	1	2013
от т.21 до ж.д. №4 ул. Дубковская	32	25	36	1	2013
от т.1 до т.22	108	100	58	1	2017
от т.22 до т.22а	57	50	28,5	1	2009
от т.22а до	57	50	4,5	1	2009

ж.д,№2 ул.					
Дубковская	100	100	2	1	2017
от т.22 до т.23	108	100	2	1	2017
от т.23 до т.24	108	100	7,7	1	2017
от т.24 до ж.д,№1 ул. Дубковская	57	50	8	1	2009
от т.24 до т.25	110/145	100	73	2	2017
от т.25 до т.26	110/145	100	205	2	2017
от т.26 до т.27	110/145	100	8,6	2	2017
от т.27 до 27а	89	80	12,7	1	2016
от т.27а до здания школы	89	80	6,5	1	2016
от т.27 до т.28	57	50	9,1	1	2016
от т.28 до т.29	57	50	4	1	2016
от т.29 до ж.д.№27а ул.Школьная	57	50	42	1	2016
	Всего		1451,7		
	Тепл	отрасса от	котельной № 1/10		
от кот. АМК №10 до т.1	89	80	13,5	1	2016
от т.1 до т.1а	57	50	32	1	2011
от т.1а до т.1б	57	50	6	1	2011
от т.1б до т.2	57	50	7,7	1	2011
от т.2 до т.3	57	50	35	1	2011
от т.3 до т.3а	57	50	10	1	2011
от т.3а до т. 4	45	40	30,4	1	2012
от т.4 до т.5	45	40	25,5	1	2012
от т.5 до т.5а	45	40	48,7	1	2012
от т.5а до т.5б под дорогой	45	40	8	2	2012
от т.5б до т.6	38	32	15,9	1	2012
от т.6 до ж.д. ул. Новая	38	32	10,2	1	2012
от т.5 до т.7	45	40	17	1	2012
от т.7 до т.8	45	40	23	1	2012

	4.7	40			2012
от т.8 до т.8а	45	40	4	1	2012
от т.8а до			_		
ж.д.№20 ул.	45	40	0,6	1	2012
Новая		1.0	,		2012
от т.7 до т.7а	45	40	4	1	2012
от т.7а до т.7б	45	40	23,2	1	2012
от т.7б до ж.д.	45	40	8	1	2012
№25 ул. Новая		10		•	2012
от т.2 до т.9	57	50	17,5	1	2011
от т.9 до т.9а	57	50	10,16	1	2011
от т.9а до ж.д.					
№19, кв.1 ул.	57	50	1,5	1	2011
Гагарина					
от т.9а до т.9б	57	50	19,84	1	2011
от т.9б до ж.д.					
№19, кв. 2 ул.	57	50	1,5	1	2011
Гагарина					
от т.9 до т.10	57	50	26	1	2011
от т.10 до т.11	57	50	8	1	2011
от т.11 до					
ж.д.№16 ул.	57	50	38	1	2011
Новая					
от т.1 до т.12	108	100	60,4	1	2011
от т.12 до т.13	108	100	52,5	1	2011
от т.13 до					
ж.д.№37 ул.	57	50	6	1	2011
Гагарина					
от т.13 до т.14	108	100	17	1	2011
от т.14 до т.15	57	50	15,8	1	2011
от т.15 до т.16	57	50	11,4	1	2011
от т.16 до					
ж.д.№16 ул.	57	50	6	1	2011
Гагарина					
от т.16 до т.17	57	50	49,7	1	2011
от т.17 до					
ж.д.№14, кв.1	57	50	6	1	2011
ул. Гагарина					
от т.17 до т.18	57	50	12,2	1	2011

от т.18 до					
ж.д.№14 ,кв.2	57	50	6	1	2011
ул. Гагарина					
от т.18 до т.19	57	50	29,5	1	2011
от т.19 до					
ж.д.№12, кв.1	57	50	6	1	2011
ул. Гагарина					
от т.19 до т.20	57	50	8,7	1	2011
от т.20 до					
ж.д.№12, кв.2	57	50	6	1	2011
ул. Гагарина					
от т.20 до т.21	57	50	29,5	1	2011
от т.21 до					
ж.д.№10, кв.1	57	50	6	1	2011
ул. Гагарина					
от т.21 до т.22	57	50	8,2	1	2011
от т.22 до					
ж.д.№10, кв.2	57	50	6	1	2011
ул. Гагарина					
от т.15 до т.23	57	50	5	1	2019
от т.23 до т.24	57	50	7.6	2	2010
под дорогой	57	50	7,6	2	2019
от т.24 до т.25	57	50	20	1	2008
от т.25 до т.26	57	50	14,1	1	2008
от т.26 до					
ж.д.№15, кв.1	32	25	4	1	2011
ул.Гагарина					
от т.26 до т.27	57	50	17,7	1	2008
от т.27 до					
ж.д.№15, кв.2	32	25	4	1	2011
ул.Гагарина					
от т.27 до т.28	57	50	27,4	1	2008
от т.28 до					
ж.д.№13, кв.1	32	25	4	1	2011
ул.Гагарина					
от т.28 до т.29	57	50	35,7	1	2008
от т.29 до	22	25	4	1	2011
ж.д.№11, кв.1	32	25	4	1	2011

ул.Гагарина					
от т.29 до т.30	57	50	17,6	1	2008
от т.30 до					
ж.д.№11, кв.2	32	25	4	1	2011
ул.Гагарина					
от т.30 до т.31	57	50	18,8	1	2008
от т.31 до					
ж.д.№9, кв.1	32	25	4	1	2011
ул.Гагарина					
от т.31 до т.32	57	50	17,6	1	2008
от т.32 до					
ж.д.№9, кв.2	32	25	4	1	2011
ул.Гагарина					
	Всего		997,6		
-	Геплотрасса от	котельной]	КГОБУ Первомайсн	кой КШИ	[
от котельной					
до КГОБУ			44	1	1989
Первомайской			77	1	(2020)
КШИ					
Всего			44		

В рассматриваемой системе теплоснабжения на диаметрах трубопроводах до 50 мм используется запорная арматура вентильного и шарового типа, на диаметрах свыше 50 мм – клинового.

Камеры и павильоны устраиваются в местах установки оборудования теплопроводов: задвижек, сальниковых компенсаторов, спускных и воздушных кранов, мертвых опор и др. Строительная часть камер часто выполняется из кирпича, а также из монолитного бетона или железобетона. Сборный железобетон главным образом применяется для устройства перекрытий.

График регулирования отпуска тепла предоставлен в таблице 1.5.

Фактические температурные режимы отпуска тепла в тепловые сети соответствуют утверждённым графикам регулирования отпуска тепла в тепловые сети.

Накопление статистических данных по авариям и отказам элементов схемы теплоснабжения не ведётся.

В настоящее время не существует единого метода для мониторинга состояния

тепловых сетей неразрушающего контроля металла трубопроводов, который бы сочетал в себе одновременно простоту и широкий диапазон применения на тепловых сетях, высокую эффективность и достоверность результатов. В связи с этим в рассматриваемой схеме теплоснабжения используется визуальный метод диагностики состояния тепловых сетей.

Согласно требованиям «Правила технической эксплуатации тепловых энергоустановок» (Минэнерго Росси №235 от 24.03.03 г) и «Типовой инструкции по технической эксплуатации систем транспорта и распределения тепловой энергии» (РД 153-34.0-20.507-98) гидравлические испытания на прочность и плотность тепловых сетей проводятся ежегодно.

Нормативные технологические потери при передаче тепловой энергии рассчитаны согласно методике, изложенной в приказе от 30 декабря 2008 г. №325 «Об организации в министерстве энергетики российской федерации работы по утверждению нормативов технологических потерь при передаче тепловой энергии».

Предписаний надзорных органов о запрещении эксплуатации участков тепловой сети на момент разработки схемы теплоснабжения нет.

Потребители подключены к тепловым сетям по зависимой схеме присоединения без смешения.

Руководствуясь пунктом 5 статьи 13 Федерального закона от 23.23.2009г. №261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» собственники жилых домов, собственники помещений в многоквартирных домах, введенных в эксплуатацию на день вступления закона № 261-ФЗ в силу, обязаны в срок до 1 января 2012 года обеспечить оснащение таких домов приборами учета используемых воды, природного газа, тепловой энергии, электрической энергии, а также ввод установленных приборов учета в эксплуатацию. При этом многоквартирные дома в указанный срок должны быть оснащены коллективными (общедомовыми) приборами учета используемых коммунальных ресурсов, а также индивидуальными и общими (для коммунальной квартиры) приборами учета. Сведения о фактической оснащенности потребителей тепловой энергии приборами

учета тепловой энергии предоставлены не были.

Тепломеханическое оборудование на источниках централизованного теплоснабжения имеет низкую степень автоматизации. Тепловые сети имеют слабую диспетчеризацию. Регулирующие и запорные задвижки не имеют средств телемеханизации. Диспетчерские теплосетевых организаций оборудованы телефонной связью и доступом в интернет, принимают сигналы об утечках и авариях на сетях от жителей и обслуживающего персонала.

Защита тепловых сетей от превышения давления осуществляется на теплоисточниках путем установки предохранительных клапанов.

Статья 15, пункт 6. Федерального закона от 27 июля 2022 года № 190-ФЗ: «В случае выявления бесхозяйных тепловых сетей (тепловых сетей, не имеющих эксплуатирующей организации) орган местного самоуправления поселения или городского округа до признания права собственности на указанные бесхозяйные тепловые сети в течение тридцати дней с даты их выявления обязан определить теплосетевую организацию, тепловые сети которой непосредственно соединены с указанными бесхозяйными тепловыми сетями, или единую теплоснабжающую организацию в системе теплоснабжения, в которую входят указанные бесхозяйные тепловые сети и которая осуществляет содержание и обслуживание указанных бесхозяйных тепловых сетей. Орган регулирования обязан включить затраты на бесхозяйных обслуживание тепловых сетей тарифы содержание соответствующей организации на следующий период регулирования».

Принятие на учет бесхозяйных тепловых сетей (тепловых сетей, не имеющих эксплуатирующей организации) осуществляется на основании постановления Правительства РФ от 17.09.2003г. № 580.

На основании статьи 225 Гражданского кодекса РФ по истечении года со дня постановки бесхозяйной недвижимой вещи на учет орган, уполномоченный управлять муниципальным имуществом, может обратиться в суд с требованием о признании права муниципальной собственности на эту вещь.

По результатам инвентаризации бесхозных тепловых сетей на территории поселения не выявлено.

1.4 Зоны действия источников тепловой энергии

Зона действия котельной № 1/09 — село Первомайское, теплоисточник обеспечивает нужды поселения на отопление с присоединённой тепловой нагрузкой 2,85 Гкал/ч.

Зона действия котельной № 1/10 — село Первомайское, теплоисточник обеспечивает нужды поселения на отопление с присоединённой тепловой нагрузкой 0,688 Гкал/ч.

Зона действия котельной КГОБУ Первомайской КШИ – село Первомайское.

Радиус эффективного теплоснабжения — максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения. Радиус эффективного теплоснабжения в равной степени зависит, как от удаленности теплового потребителя от источника теплоснабжения, так и от величины тепловой нагрузки потребителя.

Согласно проведенной оценке в радиус эффективного теплоснабжения котельной попадают участки застройки малоэтажного жилищного строительства, а также здания общественного назначения. Индивидуальный жилищный фонд подключать к централизованным сетям нецелесообразно, ввиду малой плотности распределения тепловой нагрузки.

Зоны действия теплоснабжения представлены на рисунке 1.1, 1.2, 1.3.

1.5 Тепловые нагрузки потребителей тепловой энергии, групп потребителей тепловой энергии

Максимальные часовые присоединенные нагрузки на отопление по потребителям муниципального образования Сунятсенское сельское поселение представлены в таблице 1.7.

Таблица 1.7 – Тепловые нагрузки потребителей

Наименован ие объекта	Фактический адрес местонахождения	Объем зданий, м ³	подвал, м ³	Этажность здания	Нагрузка на отопление, Гкал/ч	Потребление тепловой энергии на отопление, Гкал/год
	к с. Первома	Сотельная J эйское vn - 3		ıя 36		
Жилой дом	с. Первомайское ул.Дубковская. 1	2370,00	758,40	2		
Жилой дом	с. Первомайское ул. Дубковская. 2	2370,00	782,10	2		
Жилой дом	с. Первомайское ул.Дубковская. 4	280,00		1		
Жилой дом	с. Первомайское ул.Дубковская. 7	2867,00	888,80	2		
Жилой дом	с. Первомайское ул.Дубковская. 8	2894,00	926,10	2		
Жилой дом	с. Первомайское ул. Ленинская.5	3335,00	1067,20	2		
Жилой дом	с. Первомайское ул. Ленинская.6	3335,00	1100,60	2		
Жилой дом	с. Первомайское ул. Ленинская.9	2862,40	1001,80	2		
Жилой дом	с. Первомайское ул. Ленинская.10	2923,00	935,40	2		
Жилой дом	с. Первомайское ул. Островского.3	1680,00		2		
Жилой дом	с. Первомайское ул. Островского.4	1680,00		2		

ДОУ "Василек"	с. Первомайское ул. Островского	677,20		2		
ФАП	с. Первомайское ул.Ленинская	572,00		1		
ГОУ	J					
"Первомайс кое КШИ" (школа-интернат)	с. Первомайское ул. Островского.30	2422,82		2		
СОШ	с. Первомайское ул.Школьная, д.27			3		
	Итого				1,125	2 133,2930
		отельная Л				
	с. Первом	иайское ул.	Гагарина	37a		
Жилой дом	с. Первомайское ул. Гагарина.37	3808,00	1251,00	2		
Жилой дом	с. Первомайское ул. Гагарина.9	335,00		1		
Жилой дом	с. Первомайское ул. Гагарина.10	335,70		1		
Жилой дом	с. Первомайское ул. Гагарина.11	176,00		1		
Жилой дом	с. Первомайское ул. Гагарина.12	371,90		1		
Жилой дом	с. Первомайское ул. Гагарина.13 кв№2	179,00		1		
Жилой дом	с. Первомайское ул. Гагарина,14	352,10		1		
Жилой дом	с. Первомайское ул. Гагарина,15	360,20		1		
Жилой дом	с. Первомайское ул. Гагарина,16	250,00		1		
Жилой дом	с. Первомайское ул. Гагарина,17	187,00		1		
Жилой дом	с. Первомайское ул. Гагарина,19	335,00		1		
Жилой дом	с. Первомайское ул. Гагарина,25 кв-1	242,10		1		
Жилой дом	с. Первомайское ул. Новая,13	335,00		1		
Жилой дом	с. Первомайское ул. Новая,16	168,00		1		
Жилой дом	с. Первомайское	294,10		1		

	ул. Новая,20						
	Итого				0,245	606,1700	
Котельная КГОБУ Первомайской КШИ							
	с.Первомайское ул.Школьная, 26						
КГОБУ	a Hampartayaya						
Первомайск	с.Первомайское ул.Школьная, 26	725,8		1		139 т	
ой КШИ	ул.школьная, 20						

1.6 Балансы тепловой мощности и тепловой нагрузки

Постановление Правительства РФ №154 от 22.02.2012 г., «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения» вводит следующие понятия:

Установленная мощность источника тепловой энергии — сумма номинальных тепловых мощностей всего принятого по акту ввода в эксплуатацию оборудования, предназначенного для отпуска тепловой энергии потребителям на собственные и хозяйственные нужды;

Располагаемая мощность источника тепловой энергии - величина, равная установленной мощности источника тепловой энергии за вычетом объемов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продленном техническом ресурсе (снижение параметров пара перед турбиной, отсутствие рециркуляции в пиковых водогрейных котлоагрегатах и др.);

Мощность источника тепловой энергии нетто - величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки на собственные и хозяйственные нужды.

В таблице 1.8 приведена информация по годовому потреблению тепловой энергии потребителями (с разбивкой по видам потребления и по группам потребителей), по потерям тепловой энергии в наружных тепловых сетях от источника тепловой энергии, величина собственных нужд источника тепловой энергии.

Таблица 1.8 – Баланс тепловой энергии

Наименование показателя	Котельная №1/9	Котельная АМК №1/10
Вид собственности	Арендованное имущество	Собственность КГУП
Установленная мощность, Гкал/час	2,85	0,688
Располагаемая мощность, Гкал/час	2,288	0,619
Тепловая мощность НЕТТО, Гкал/час	2,85	0,688
Подключенная тепловая нагрузка, Гкал/час	1,125	0,245
Выработка тепловой энергии всего, Гкал/год	2 136,348	602,554
Расход на собственные нужды, Гкал/год	129,824	5,485
Отпуск в сеть, Гкал/год	2 133,291	606,168
Потери, Гкал/год	-126,767	-9,099
Полезный отпуск, всего в т.ч., Гкал/год	2 133,2930	606,168
Договорные годовые нагрузки по потребителям за отопление, Гкал/год		
Жилфонд:	1 730,241	606,170
Местный бюджет	304,366	0,000
Краевой бюджет	98,686	0,000
Федеральный бюджет	0,000	0,000
Прочие объекты:	0,000	0,000

^{*-} отрицательное значение потерь, связано с тем, что значение выработки фактическое, а значение потребления тепловой энергии абонентами, расчётное.

В таблице 1.9 приведены резервы и дефициты тепловой мощности НЕТТО по каждому источнику тепловой энергии на 2019 год.

Таблица 1.9 – Резервы и дефициты тепловой мощности НЕТТО

Harmanananan	Котельная	Котельная
Наименование	№ 1/9	AMK №1/10
Тепловая мощность НЕТТО, Гкал/ч	2,85	0,688
Подключенная тепловая нагрузка, Гкал/ч	1,125	0,245
Резерв(+)/дефицит(-), %	39,5	35,6

Договорные годовые нагрузки по потребителям за отопление от Котельной КГОБУ Первомайской КШИ составляют - 139 т./год.

По фактическим данным в настоящее время зон с дефицитом тепловой энергии нет, располагаемой мощности источников, хватает для покрытия существующих нагрузок, гидравлический режим теплосети позволяет обеспечивать всех подключенных потребителей.

Во избежание возникновения дефицитов и ухудшения качества теплоснабжения рекомендуется:

- 1. Разработать и соблюдать программу мероприятий по экономии топлива, программу мероприятий по достижению нормативных значений, программу мероприятий по снижению расходов технической воды, электроэнергии и тепла на собственные нужды.
- 2. Ежедневно проводить анализ технического состояния работы оборудования и технико-экономических показателей работы станции.
- 3. Регулярно проводить работы по наладке и испытаниям оборудования. Эти работы проводятся до и после ремонтов оборудования, а также при отклонении показателей работы от нормативных значений.
- 4. Вести учет, контроль и выполнение директивных документов Минэнерго России и Ростехнадзора России по вопросам повышения надежности и безопасности работы энергооборудования.
- 5. Вести учет и расследование нарушений в работе энергооборудования, разработать мероприятий по предупреждению аналогичных нарушений.
 - 6. Установка приборов учёта выработанной тепловой энергии.

В связи с вышеизложенным, расширение технологических зон действия источников с резервами тепловой мощности нетто в зоны действия с дефицитом

тепловой мощности не требуется.

1.7 Балансы теплоносителя

Баланс производительности водоподготовительных установок складывается из нижеприведенных статей:

- объем воды на заполнение наружной тепловой сети, м³;
- объем воды на подпитку системы теплоснабжения, м³;
- объем воды на собственные нужды котельной, м³;
- объем воды на заполнение системы отопления (объектов), м³;
- объем воды на горячее теплоснабжение, M^3 .

В процессе эксплуатации необходимо чтобы ВПУ обеспечивала подпитку тепловой сети, расход потребителями теплоносителя (ГВС) и собственные нужды котельной.

Объем воды для наполнения трубопроводов тепловых сетей, м³, вычисляется в зависимости от их площади сечения и протяженности по формуле:

$$V_{cemu} = \sum v_{di} l_{di}$$

где

 v_{di} - удельный объем воды в трубопроводе i-го диаметра протяженностью 1, m^3/m ;

 l_{di} - протяженность участка тепловой сети i-го диаметра, м;

n - количество участков сети;

Объем воды на заполнение тепловой системы отопления внутренней системы отопления объекта (здания)

$$V_{om} = v_{om} * Q_{om}$$

где

 v_{om} — удельный объем воды (справочная величина v_{om} =30 м³/Гкал/ч);

 Q_{om} - максимальный тепловой поток на отопление здания (расчетнонормативная величина), Гкал/ч.

Объем воды на подпитку системы теплоснабжения закрытая система

$$V_{no\partial n} = 0.0025 \cdot V$$

где

V - объем воды в трубопроводах т/сети и системе отопления, м³. открытая система

$$V_{no\partial n} = 0.0025 \cdot V + G_{280}$$

где

 $G_{\it cec}$ - среднечасовой расход воды на горячее водоснабжение, м³.

Согласно СНиП 41-02-2003 «Тепловые сети» п. 6.16. Расчетный часовой расход воды для определения производительности водоподготовки и соответствующего оборудования для подпитки системы теплоснабжения следует принимать:

в закрытых системах теплоснабжения - 0.75 % фактического объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления и вентиляции зданий. При этом для участков тепловых сетей длиной более 5 км от источников теплоты без распределения теплоты расчетный расход воды следует принимать равным 0.5 % объема воды в этих трубопроводах;

в открытых системах теплоснабжения - равным расчетному среднему расходу воды на горячее водоснабжение с коэффициентом 1,2 плюс 0,75 % фактического объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления, вентиляции и горячего водоснабжения зданий. При этом для участков тепловых сетей длиной более 5 км от источников теплоты без распределения теплоты расчетный расход воды следует принимать равным 0,5 % объема воды в этих трубопроводах.

Согласно СНиП 41-02-2003 «Тепловые сети» п. 6.17. Для открытых и закрытых систем теплоснабжения должна предусматриваться дополнительно аварийная подпитка химически не обработанной и недеаэрированной водой, расход которой принимается в количестве 2 % объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления, вентиляции и в системах горячего водоснабжения для открытых систем теплоснабжения. При наличии нескольких отдельных тепловых сетей, отходящих от коллектора теплоисточника, аварийную подпитку допускается определять только для одной

наибольшей по объему тепловой сети. Для открытых систем теплоснабжения аварийная подпитка должна обеспечиваться только из систем хозяйственнопитьевого водоснабжения.

Результаты расчетов (баланс производительности) по каждому источнику тепловой энергии приведены в таблице 1.10.

Таблица 1.10 – Баланс производительности водоподготовительных установок

	*		<u> </u>					
	Заполнение		Заполнение					
Период	тепловой сети, т	Подпитка тепловой сети, т	системы отопления потребителей, т					
Котельная № 1/9								
2019 г.	16,6776	514,76	26,65					
Котельная № 1/10								
2019 г.	5,0328	128,18	5,76					

1.8 Топливные балансы источников тепловой энергии и система обеспечения топливом

Для источников тепловой энергии муниципального образования Сунятсенское сельское поселение основным видом топлива является уголь и мазут.

В таблице 1.11 приведены топливные балансы для каждого источника тепловой энергии, расположенного в границах поселения.

Таблица 1.11 – Топливный баланс

			Котельная КГОБУ	
Период	Котельная №1/09	Котельная №1/10	Первомайской	
			КШИ	
	уголь	уголь	уголь	
Размерность	THT	THT	THT	
Факт 2019-	1 133,866	183,506	139,000	
2020г.	·	,	,	

Топливо поставляется железнодорожным и автомобильным транспортом.

1.9 Надежность теплоснабжения

Задачей теплоснабжения является обеспечение требуемых уровней параметров у потребителей, при которых достигаются комфортные условия жизни людей. Социальные последствия, возникающие при нарушении нормальных условий работы и жизни людей, не поддаются экономической оценке, однако их влияние весьма велико и поэтому в методике оценки надежности исходят из принципа недопустимости отказов.

В публикациях определению причин возникновения повреждений на тепловых сетях уделяется пристальное внимание и сводится к одной из перечисленных ниже:

- наличие «капели» с плит перекрытий каналов;
- наличие воды в канале или занос канала грунтом, когда вода или грунт достигают теплоизоляционной конструкции или поверхноститрубопровода;
- коррозионные повреждения опорных металлоконструкций;
- коррозионно-опасное влияние постоянных блуждающих и переменных токов
- ветхость оборудования.

металла трубопроводов Коррозионные процессы являются основной причиной повреждений теплопроводов в процессе эксплуатации и являются воздействий результатом физико-химических окружающей среды трубопроводы. Существенными факторами, определяющими коррозионную активность среды, является структура, гранулометрический состав, влажность, окислительно-восстановительный воздухопроницаемость, потенциал. обшая кислотность и общая щелочность почв и грунтов. Помимо почвенной коррозии, подземные теплопроводы подвержены электрокоррозии, вызываемой блуждающими токами, и внутренней коррозии.

Данные по авариям на тепловых сетях муниципального образования Сунятсенское сельское поселение за последние пять лет не предоставлены.

1.10 Технико-экономические показатели теплоснабжающих и теплосетевых организаций

Основные технико-экономические показатели предприятия - это система измерителей, абсолютных и относительных показателей, которая характеризует хозяйственно-экономическую деятельность предприятия. Комплексный характер системы технико-экономических показателей позволяет адекватно оценить деятельность отдельного предприятия и сопоставить его результаты в динамике.

Ниже представлены в таблицы 1.12 технико-экономические показатели для котельных, характеризующие хозяйственно-экономическую деятельность.

Таблица 1.12 – Технико – экономические показатели

Наименование показателя	Котельная №1/9	Котельная АМК №1/10
Установленная мощность, Гкал/час	2,85	0,688
Располагаемая мощность, Гкал/час	2,288	0,619
Выработка тепловой энергии всего, Гкал/год	2 136,348	602,554
Расход на собственные нужды, Гкал/год	129,824	5,485
Отпуск в сеть, Гкал/год	2 133,291	606,168
Потери, Гкал/год	-126,767	-9,099
Полезный отпуск, Гкал/год	2 133,2930	606,168

^{*-} отрицательное значение потерь, связано с тем, что значение выработки фактическое, а значение потребления тепловой энергии абонентами, расчётное.

1.11 Цены (тарифы) в сфере теплоснабжения

Плата на подключение к тепловым сетям устанавливается для лиц, осуществляющих строительство и (или) реконструкцию здания, сооружения, иного объекта, в случае, если данное строительство, реконструкция влекут за собой увеличение нагрузки.

Плата за подключение вносится на основании публичного договора, заключаемого теплосетевой организацией с обратившимися к ней лицами, осуществляющими строительство и (или) реконструкцию объекта.

Указанный договор определяет порядок и условия подключения объекта к тепловым сетям, порядок внесения платы за подключение.

Плата за работы по присоединению внутриплощадочных и (или) внутридомовых сетей построенного (реконструированного) объекта капитального строительства в точке подключения к тепловым сетям Общества определяется соглашением сторон. В состав данной платы включаются:

- работы по врезке построенных сетей в существующую сеть;
- объем слитого, в результате выполнения работ по присоединению объектов заказчика к тепловой сети, теплоносителя и объем потерянной с теплоносителем тепловой энергии по тарифам, утвержденным в установленном законодательством порядке.

Согласно ч.3 ст. 13 ФЗ №190 «О теплоснабжении» от 27.07.2022 г. (20) потребители, подключенные к системе теплоснабжения, но не потребляющие тепловой энергии (мощности), теплоносителя по договору теплоснабжения, заключают с теплоснабжающими организациями договоры оказания услуг по поддержанию резервной тепловой мощности и оплачивают указанные услуги по регулируемым ценам (тарифам) или по ценам, определяемым соглашением сторон договора, в случаях, предусмотренных настоящим Федеральным законом, в порядке, установленном статьей 16 настоящего Федерального закона.

В соответствии со ст. 16 ФЗ-190:

- 1. Плата за услуги по поддержанию резервной тепловой мощности устанавливается в случае, если потребитель не потребляет тепловую энергию, но не осуществил отсоединение принадлежащих ему теплопотребляющих установок от тепловой сети в целях сохранения возможности возобновить потребление тепловой энергии при возникновении такой необходимости.
- 2. Плата за услуги по поддержанию резервной тепловой мощности подлежит регулированию для отдельных категорий социально значимых потребителей, перечень которых определяется основами ценообразования в сфере

теплоснабжения, утвержденными Правительством Российской Федерации, и устанавливается как сумма ставок за поддерживаемую мощность источника тепловой энергии и за поддерживаемую мощность тепловых сетей в объеме, необходимом для возможного обеспечения тепловой нагрузки потребителя.

3. Для иных категорий потребителей тепловой энергии плата за услуги по поддержанию резервной тепловой мощности не регулируется и устанавливается соглашением сторон.

При этом нормы ФЗ четко не определяют, каким именно соглашением размер платы подлежит урегулированию. В связи с этим представляется, что размер платы может быть урегулирован как в рамках договора оказания услуг по поддержанию резервной тепловой мощности, так и в рамках самостоятельного формализованного соглашения сторон о размере платы, либо же посредством включения условия о размере платы непосредственно в договор теплоснабжения.

Плата за услуги по поддержанию резервной тепловой мощности, в том числе для социально значимых категорий потребителей, в рассматриваемый период не взималась.

Решения об установлении тарифов на теплоноситель, поставляемый теплоснабжающими организациями потребителям, другим теплоснабжающим организациям, платы за услуги по поддержанию резервной тепловой мощности при отсутствии потребления тепловой энергии, а также платы за подключение к системе теплоснабжения принимаются органами регулирования в течение одного месяца со дня вступления в силу методических указаний, предусмотренных подпунктом «а» пункта 3 постановления от 22 октября 2012 г. №2275 «О ценообразовании в сфере теплоснабжения».

На 2019-2023 годы тарифы на тепловую энергию для потребителей краевого государственного унитарного предприятия «Примтеплоэнерго» установлены Департаментом по тарифам Приморского края от 20.12.2018 г. № 70/6 «Об установлении тарифов на тепловую энергию (мощность) поставляемую краевым государственным унитарным предприятием «Примтеплоэнерго» на период регулирования с 2019 по 2023 годы».

В таблице 1.13 представлены утвержденные тарифы на тепловую энергию для

Сунятсенское сельского поселения. На рис. 1.4 представлена динамика изменения утвержденных тарифов.

Таблица 1.13 – Тарифы на тепловую энергию на 2020-2023 годы

,	Tuothiqui III Tuphiqui nu Tomice di Color i i i i i i i i i i i i i i i i i i i						
Вид тарифа	Год	Вода					
Бид тарифа	ТОД	С 01 января по 30 июня	С 01 июля по 31 декабря				
Для потребител	ей в случа	е отсутствия дифференциа	ции тарифов по схеме				
	подключения						
	2020	4246,25	4421,13				
	2021	4421,13	4498,57				
	2022	4498,57	4766,83				
	2023	4752,13	4752,13				
На	селение (т	арифы указываются с учет	сом НДС)				
	2020	5095,50	5305,36				
	2021	5305,36	5398,28				
	2022	5398,28	5720,20				
	2023	5702,77	5702,77				

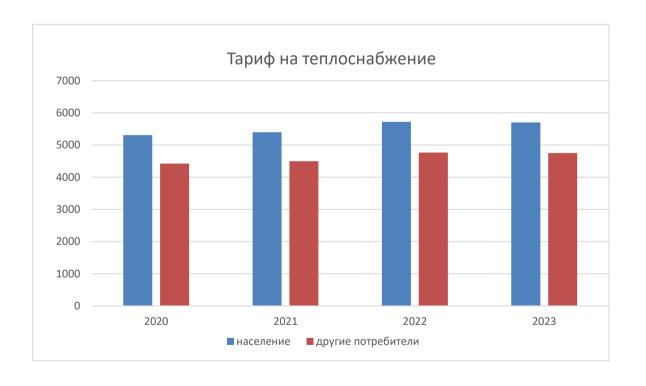


Рисунок 1.4 – Динамика изменения тарифов на теплоснабжение

1.12 Описание существующих технических и технологических проблем в системах теплоснабжения поселения

Проблемы в организации качественного теплоснабжения на текущий момент связаны с высоким износом тепловых сетей и их теплоизоляционных конструкций. По причине сверхнормативных потерь тепловой энергии через теплоизоляцию и с утечками происходит недоотпуск теплоносителя. Решение данной проблемы возможно путем капитального ремонта тепловых сетей.

Проблемы в организации надежного и безопасного теплоснабжения на данный момент обусловлены высоким износом тепловых сетей и малой их резервируемостью. Решение данной проблемы возможно путем капитального ремонта тепловых сетей.

Развитие систем теплоснабжения замедлено по причине недостатка инвестиций в развитие источников теплоснабжения и тепловых сетей. Решение возможно путем включения в тарифы теплоснабжающих организаций инвестиционной составляющей.

Проблем с надежностью и эффективностью снабжением топливом в действующих системах теплоснабжения не наблюдается.

2. СУЩЕСТВУЮЩЕЕ И ПЕРСПЕКТИВНОЕ ПОТРЕБЛЕНИЕ ТЕПЛОВОЙ ЭНЕРГИИ НА ЦЕЛИ ТЕПЛОСНАБЖЕНИЯ

Площадь муниципального образования Сунятсенского сельское поселение составляет 48,1 тыс. м². На расчетный период с 2020 по 2034 гг. новое строительство жилых и административных зданий, подключаемых к центральному теплоснабжению, не планируется.

В таблицах 2.1 - 2.2 приведена информация по годовому потреблению тепловой энергии потребителями (с разбивкой по видам потребления и по группам потребителей), по потерям тепловой энергии в наружных тепловых сетях от источника тепловой энергии, величина собственных нужд источника тепловой энергии, величина производства тепловой энергии по следующим источникам тепловой энергии.

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СУНЯТСЕНСКОЕ СЕЛЬСКОЕ ПОСЕЛЕНИЕ МИХАЙЛОВСКОГО РАЙОНА ПРИМОРСКОГО КРАЯ

Таблица 2.1 – Перспективный баланс тепловой энергии по источнику тепловой энергии – котельная № 1/9

Наименование показателя	2020 г.	2021 г.	2022 г.	2023 г.	2024 г.	2025-2029 гг.	2030-2034 гг.
1	2	3	4	5	6	7	8
Установленная мощность, Гкал/час	2,85	2,85	2,85	2,85	2,85	2,85	2,85
Располагаемая мощность, Гкал/час	2,288	2,288	2,288	2,288	2,288	2,288	2,288
Тепловая мощность НЕТТО, Гкал/час	2,85	2,85	2,85	2,85	2,85	2,85	2,85
Подключенная тепловая нагрузка, Гкал/час	1,125	1,125	1,125	1,125	1,125	1,125	1,125
Выработка тепловой энергии всего, Гкал/год	2 136,348	2 136,348	2 136,348	2 136,348	2 136,348	2 136,348	2 136,348
Расход на собственные нужды, Гкал/год	129,824	129,824	129,824	129,824	129,824	129,824	129,824
Отпуск в сеть, Гкал/год	2 133,291	2 133,291	2 133,291	2 133,291	2 133,291	2 133,291	2 133,291
Потери, Гкал/год	-126,767	-126,767	-126,767	-126,767	-126,767	-126,767	-126,767
Полезный отпуск, всего в т.ч., Гкал/год	2 133,2930	2 133,2930	2 133,2930	2 133,2930	2 133,2930	2 133,2930	2 133,2930
Договорные годовые нагрузки по потребителям за отопление, Гкал/год							
Жилфонд:	1 730,241	1 730,241	1 730,241	1 730,241	1 730,241	1 730,241	1 730,241
Местный бюджет	304,366	304,366	304,366	304,366	304,366	304,366	304,366
Краевой бюджет	98,686	98,686	98,686	98,686	98,686	98,686	98,686
Федеральный бюджет	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Прочие объекты:	0,000	0,000	0,000	0,000	0,000	0,000	0,000

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СУНЯТСЕНСКОЕ СЕЛЬСКОЕ ПОСЕЛЕНИЕ МИХАЙЛОВСКОГО РАЙОНА ПРИМОРСКОГО КРАЯ

Таблица 2.2 – Перспективный баланс тепловой энергии по источнику тепловой энергии – котельная № 1/10

Наименование показателя	2020 г.	2021 г.	2022 г.	2023 г.	2024 г.	2025-2029 гг.	2030-2034 гг.
1	2	3	4	5	6	7	8
Установленная мощность, Гкал/час	0,688	0,688	0,688	0,688	0,688	0,688	0,688
Располагаемая мощность, Гкал/час	0,619	0,619	0,619	0,619	0,619	0,619	0,619
Тепловая мощность НЕТТО, Гкал/час	0,688	0,688	0,688	0,688	0,688	0,688	0,688
Подключенная тепловая нагрузка, Гкал/час	0,245	0,245	0,245	0,245	0,245	0,245	0,245
Выработка тепловой энергии всего, Гкал/год	602,554	602,554	602,554	602,554	602,554	602,554	602,554
Расход на собственные нужды, Гкал/год	5,485	5,485	5,485	5,485	5,485	5,485	5,485
Отпуск в сеть, Гкал/год	606,168	606,168	606,168	606,168	606,168	606,168	606,168
Потери, Гкал/год	-9,099	-9,099	-9,099	-9,099	-9,099	-9,099	-9,099
Полезный отпуск, всего в т.ч., Гкал/год	606,168	606,168	606,168	606,168	606,168	606,168	606,168
Договорные годовые нагрузки по потребителям за отопление, Гкал/год							
Жилфонд:	606,170	606,170	606,170	606,170	606,170	606,170	606,170
Местный бюджет	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Краевой бюджет	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Федеральный бюджет	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Прочие объекты:	0,000	0,000	0,000	0,000	0,000	0,000	0,000

^{*-} отрицательное значение потерь, связано с тем, что значение выработки фактическое, а значение потребления тепловой энергии абонентами, расчётное.

3. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ НАГРУЗКИ

В таблице 3.1 приведены перспективные балансы тепловой мощности и тепловой нагрузки по каждому источнику тепловой энергии на период 2020-2034 г.г.

Таблица 3.1 – Перспективные балансы тепловой энергии

Период	Наименование источника тепловой	Котельная	Котельная	
	энергии	№ 1/9	№ 1/10	
	Установленная тепловая мощность,	2,85	0,688	
	Гкал/ч	·		
	Располагаемая тепловая мощность,	2,288	0,619	
2020	Гкал/час			
2020 г.	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245	
	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374	
	Резерв(+)/дефицит(-), %	49,2	39,6	
	Установленная тепловая мощность,	2.95	0.600	
	Гкал/ч	2,85	0,688	
	Располагаемая тепловая мощность,	2 200	0.610	
	Гкал/час	2,288	0,619	
2021 г.	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245	
	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374	
	Резерв(+)/дефицит(-), %	49,2	39,6	
	Установленная тепловая мощность,	2,85	0,688	
	Гкал/ч	2,03	0,088	
	Располагаемая тепловая мощность,	2 200	0.610	
	Гкал/час	2,288	0,619	
2022 г.	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245	
	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374	
	Резерв(+)/дефицит(-), %	49,2	39,6	
	Установленная тепловая мощность,	2,85	0,688	
	Гкал/ч	۷,03	0,000	
	Располагаемая тепловая мощность,	2 288	0.610	
2023 г.	Гкал/час	2,288	0,619	
	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245	

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СУНЯТСЕНСКОЕ СЕЛЬСКОЕ ПОСЕЛЕНИЕ МИХАЙЛОВСКОГО РАЙОНА ПРИМОРСКОГО КРАЯ

	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374
	Резерв(+)/дефицит(-), %	49,2	39,6
	Установленная тепловая мощность, Гкал/ч	2,85	0,688
	Располагаемая тепловая мощность, Гкал/час	2,288	0,619
2024 г.	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245
	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374
	Резерв(+)/дефицит(-), %	49,2	39,6
	Установленная тепловая мощность, Гкал/ч	2,85	0,688
2025-	Располагаемая тепловая мощность, Гкал/час	2,288	0,619
2029 гг.	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245
	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374
	Резерв(+)/дефицит(-), %	49,2	39,6
	Установленная тепловая мощность, Гкал/ч	2,85	0,688
2030-	Располагаемая тепловая мощность, Гкал/час	2,288	0,619
2034 гг.	Подключенная тепловая нагрузка, Гкал/час	1,125	0,245
	Резерв(+)/дефицит(-), Гкал/час	1,163	0,374
	Резерв(+)/дефицит(-), %	49,2	39,6

4. МАСТЕР-ПЛАН РАЗВИТИЯ СИСТЕМ ТЕАЛОСНАБЖЕНИЯ ПОСЕЛЕНИЯ

Для обеспечения устойчивого теплоснабжения муниципального образования Сунятсенское сельское поселение необходимо использовать существующую систему централизованного теплоснабжения.

5. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ПРОИЗВОДИТЕЛЬНОСТИ ВОДОПОДГОТОВИТЕЛЬНЫХ УСТАНОВОК И МАКСИМАЛЬНОГО ПОТРЕБЛЕНИЯ ТЕПЛОНОСИТЕЛЯ ТЕПЛОПОТРЕБЛЯЮЩИМИ УСТАНОВКАМИ ПОТРЕБИТЕЛЕЙ, В ТОМ ЧИСЛЕ В АВАРИЙНЫХ РЕЖИМАХ

Баланс производительности водоподготовительных установок складывается из нижеприведенных статей:

- объем воды на заполнение наружной тепловой сети, м³;
- объем воды на подпитку системы теплоснабжения, м³;
- объем воды на собственные нужды котельной, м³;
- объем воды на заполнение системы отопления (объектов), м³;
- объем воды на горячее теплоснабжение, м³.

В процессе эксплуатации необходимо чтобы ВПУ обеспечивала подпитку тепловой сети, расход потребителями теплоносителя (ГВС) и собственные нужды котельной.

Объем воды для наполнения трубопроводов тепловых сетей, $м^3$, вычисляется в зависимости от их площади сечения и протяженности по формуле:

$$V_{cemu} = \sum v_{di} l_{di}$$

где

 v_{di} - удельный объем воды в трубопроводе i-го диаметра протяженностью 1, ${
m M}^3/{
m M}$;

 l_{di} - протяженность участка тепловой сети i-го диаметра, м;

n - количество участков сети;

Объем воды на заполнение тепловой системы отопления внутренней системы отопления объекта (здания)

$$V_{om} = v_{om} * Q_{om}$$

где

 v_{om} – удельный объем воды (справочная величина $v_{om} = 30 \text{ м}^3/\Gamma \text{кал/ч}$);

 Q_{om} - максимальный тепловой поток на отопление здания (расчетнонормативная величина), Γ кал/ч.

Объем воды на подпитку системы теплоснабжения закрытая система

$$V_{no\partial n} = 0.0025 \cdot V$$

где

V - объем воды в трубопроводах т/сети и системе отопления, м 3 . открытая система

$$V_{no\partial n} = 0.0025 \cdot V + G_{coc}$$

где

 $G_{\it cвc}$ - среднечасовой расход воды на горячее водоснабжение, м 3 .

Согласно СНиП 41-02-2003 «Тепловые сети» п. 6.16. Расчетный часовой расход воды для определения производительности водоподготовки и соответствующего оборудования для подпитки системы теплоснабжения следует принимать:

в закрытых системах теплоснабжения - 0,75 % фактического объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления и вентиляции зданий. При этом для участков тепловых сетей длиной более 5 км от источников теплоты без распределения теплоты расчетный расход воды следует принимать равным 0,5 % объема воды в этих трубопроводах;

в открытых системах теплоснабжения - равным расчетному среднему расходу воды на горячее водоснабжение с коэффициентом 1,2 плюс 0,75 % фактического объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления, вентиляции и горячего водоснабжения зданий. При этом для участков тепловых сетей длиной более 5 км от источников теплоты без распределения теплоты расчетный расход воды следует принимать равным 0,5 % объема воды в

этих трубопроводах.

Согласно СНиП 41-02-2003 «Тепловые сети» п. 6.17. Для открытых и закрытых систем теплоснабжения должна предусматриваться дополнительно аварийная подпитка химически не обработанной и недеаэрированной водой, расход которой принимается в количестве 2 % объема воды в трубопроводах тепловых сетей и присоединенных к ним системах отопления, вентиляции и в системах горячего водоснабжения для открытых систем теплоснабжения. При наличии нескольких отдельных тепловых сетей, отходящих от коллектора теплоисточника, аварийную подпитку допускается определять только для одной наибольшей по объему тепловой сети. Для открытых систем теплоснабжения аварийная подпитка должна обеспечиваться только из систем хозяйственно- питьевого водоснабжения.

Результаты расчетов (перспективный баланс производительности) по источникам тепловой энергии приведены в таблице 5.1.

Таблица 5.1 – Перспективный баланс производительности водоподготовительных установок

Период	Заполнение тепловой сети, т	Подпитка тепловой сети, т	Заполнение системы отопления потребителей, т
	Котел	тьная № 1/9	
2020 г.	16,6776	514,76	26,65
2021 г.	16,6776	514,76	26,65
2022 г.	16,6776	514,76	26,65
2023 г.	16,6776	514,76	26,65
2024 г.	16,6776	514,76	26,65
2025-2029 гг.	16,6776	514,76	26,65
2030-2034 гг.	16,6776	514,76	26,65
	Котел	ьная № 1/10	
2020 г.	5,0328	128,18	5,76
2021 г.	5,0328	128,18	5,76
2022 г.	5,0328	128,18	5,76
2023 г.	5,0328	128,18	5,76
2024 г.	5,0328	128,18	5,76
2025-2029 гг.	5,0328	128,18	5,76
2030-2034 гг.	5,0328	128,18	5,76

6. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ, ТЕХНИЧЕСКОМУ ПЕРЕВООРУЖЕНИЮ И (ИЛИ) МОДЕРНИЗАЦИИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ

Организация теплоснабжения в зонах перспективного строительства и реконструкции осуществляется на основе принципов, определяемых статьёй 3 Федерального закона от 27.07.2010г. № 190-ФЗ «О теплоснабжении»:

- 1. Обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов.
- 2. Обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами.
- 3. Обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения.
 - 4. Развитие систем централизованного теплоснабжения.
- 5. Соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей.
- 6. Обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала.
- 7. Обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения.
 - 8. Обеспечение экологической безопасности теплоснабжения.

В перспективе схема теплоснабжения остается традиционной - централизованной, основным теплоносителем - сетевая вода. Тепловые сети двухтрубные, циркуляционные, подающие тепло на отопление.

Строительство источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии не планируется.

Источники тепловой энергии с комбинированной выработкой тепловой и электрической энергии отсутствуют.

Индивидуальный жилищный фонд подключать к централизованным сетям нецелесообразно, ввиду малой плотности распределения тепловой нагрузки.

В настоящее время Федеральный закон № 190 «О теплоснабжении» ввёл понятие «радиус эффективного теплоснабжения» без конкретной методики его расчёта.

Для выполнения расчета воспользуемся статьей Ю.В. Кожарина и Д.А. Волкова «К вопросу определения эффективного радиуса теплоснабжения», опубликованной в журнале «Новости теплоснабжения», №8, 2012 г.

Эффективный радиус теплоснабжения — максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Иными словами, эффективный радиус теплоснабжения определяет условия, при которых подключение теплопотребляющих установок к системе теплоснабжения нецелесообразно по причинам роста совокупных расходов в указанной системе. Учет данного показателя позволит избежать высоких потерь в сетях, улучшит качество теплоснабжения и положительно скажется на снижении расходов.

Сложившаяся к середине 90-х годов прошлого века система теплового хозяйства страны характеризовалась тенденцией к централизации теплоснабжения (до 80% производимой тепловой энергии). В крупных городах России сформировались и эксплуатируются тепловые сети с радиусом теплоснабжения до 30 км, требующие периодического ремонта и замены. Постоянная тенденция к повышению стоимости отпускаемого тепла связана не только с повышением тарифов на газ и электроэнергию, но и с постоянно растущими потерями в теплосетях и затратами на их поддержание в рабочем состоянии.

Подключение новой нагрузки к централизованным системам теплоснабжения требует постоянной проработки вариантов их развития. Оптимальный вариант должен характеризоваться экономически целесообразной зоной действия источника зоны теплоснабжения при соблюдении требований качества и надежности теплоснабжения, а также экологии.

Расчет оптимального радиуса теплоснабжения, применяемого в качестве характерного параметра, позволит определить границы действия централизованного теплоснабжения по целевой функции минимума себестоимости полезно отпущенного тепла. При этом также возможен вариант убыточности дальнего транспорта тепла, принимая во внимание важность и сложность проблемы.

Отсутствие разработанных, согласованных на федеральном уровне и введенных в действие методических рекомендаций по расчету экономически целесообразного радиуса централизованного теплоснабжения потребителей не позволяет формировать решения о реконструкции действующей системы теплоснабжения в на правлении централизации или децентрализации локальных зон теплоснабжения и принципе организации вновь создаваемой системы теплоснабжения.

Определение эффективного радиуса теплоснабжения является актуальной задачей. Расчет по целевой функции минимума себестоимости полезно отпущенного тепла является затруднительным и не всегда оказывается достоверным, как в случае комбинированной выработки тепла на ТЭЦ, когда затраты на выработку электрической энергии и тепла определяются по устаревшим методикам, разработанным более 50 лет назад.

Предлагаемая методика расчета эффективного радиуса теплоснабжения основывается на определении допустимого расстояния от источника тепла двухтрубной теплотрассы с заданным уровнем.

По изложенной в статье методике для определения максимального радиуса подключения новых потребителей к существующей тепловой сети вначале для подключаемой нагрузки при задаваемой величине удельного падения давления 5

кгс/(м²*м) определяется необходимый диаметр трубопровода. Далее для этого трубопровода определяются годовые тепловые потери. Принимается, что эффективность теплопровода с точки зрения тепловых потерь, равной величине 5% от годового отпуска тепла к подключаемому потребителю. Выполняется расчёт нормативных тепловых потерь трубопровода длиной 100 м. По формуле (5.1) определяется допустимое расстояние двухтрубной теплотрассы постоянного сечения с заданным уровнем потерь.

$$L_{\partial on} = Q_{nom} * 100 / Q_{100}$$

где: Q_{nom} — тепловые потери подключаемого трубопровода (5% от годового отпуска тепла), Гкал/год;

 Q_{100} — нормативные тепловые потери трубопровода, длиной 100 м, Гкал/год Результаты расчёта представлены в таблице 6.1.

		Q ^{Di} ,	Q ^{Di} год,	Q ^{Di} not,	До	пустимая длина	а, м
D, мм	G, т/ч				Канальная	Бесканальная	Надземная
·	·	Гкал/час	Гкал/год	Гкал/год	прокладка	прокладка	прокладка
57×3,0	2,642	0,066	196,826	9,841	33,86	26,17	21,57
76×3,0	6,142	0,154	457,582	22,879	66,47	49,55	42,22
89×4,0	9,052	0,226	674,459	33,723	92,77	68,46	58,90
128×4,0	15,835	0,396	2379,809	58,990	149,61	228,56	95,45
133×4,0	28,596	0,715	2130,623	226,531	226,47	169,53	150,74
159×4,5	46,312	1,158	3450,579	172,529	349,89	242,66	227,46
219×6,0	228,365	2,709	8073,875	403,694	634,54	442,36	429,92
273×7,0	195,558	4,889	14570,358	728,518	942,33	662,29	651,04
325×8,0	323,131	7,778	23181,273	2359,063	1285,56	897,66	843,69
377×9,0	461,444	23,536	34380,589	1719,029	1635,15	2355,96	2268,58
426×9,0	645,685	16,142	48227,699	2405,385	2020,48	1426,34	1341,84
480×7,0	915,237	22,878	68182,232	3409,226	2499,71	1786,18	1685,01
530×8,0	2383,348	29,584	88167,229	4408,355	2876,20	2062,39	1961,97
630×9,0	1869,289	46,732	1,393.225	6963,705	3680,41	2674,44	2555,30
720×22,0	2657,148	66,429	1,980.225	9898,738	4400,03	3241,13	3229,22
820×22,0	3768,085	94,202	$2,807 \cdot 22^5$	14037,337	5228,25	3901,22	3807,35
920×23,0	5097,225	127,428	$3,798 \cdot 22^5$	18988,365	6034,18	4554,55	4475,33
2220×12,0	6681,279	167,032	$4,978\cdot22^{5}$	24889,926	22956,04	22281,27	9973,52

Результаты расчетов радиусов эффективного теплоснабжения представлены в таблице 6.2

Таблица 6.2 – Радиус эффективного теплоснабжения

таолица 0.2 тадиус эффект	ивпого г	Плоспаоже	Пил	Таблица 6.2 – Радиус эффективного теплоснабжения							
Потребитель	Вектор,	Момент тепловой нагрузки Z_t , Γ кал*км/ч	Момент тепловой нагрузки Z _{ср} , Гкал*км/ч	Средний радиус теплоснабжения, км	Радиус действия тепловой сети, км	Коэффициент конфигурации тепловых сетей					
	Котельн	ая №1/9									
Жилой дом ул. Дубковская. 1	0,064	0,005	0,006								
Жилой дом ул. Дубковская. 2	0,075	0,005	0,006								
Жилой дом ул.Дубковская. 4	0,153	0,002	0,002								
Жилой дом ул. Дубковская. 7	0,058	0,005	0,028								
Жилой дом ул. Дубковская. 8	0,053	0,005	0,007								
Жилой дом ул. Ленинская.5	0,206	0,020	0,028								
Жилой дом ул. Ленинская.6	0,225	0,022	0,031								
Жилой дом ул. Ленинская.9	0,202	0,017	0,019	0,16	0,32	1,39					
Жилой дом ул. Ленинская.10	0,216	0,018	0,021	0,10	0,32	1,37					
Жилой дом ул. Островского.3	0,083	0,004	0,007								
Жилой дом ул. Островского.4	0,111	0,005	0,010								
ДОУ "Василек"	0,158	0,010	0,017								
ФАП	0,316	0,004	0,004								
ГОУ "Первомайское КШИ" (школа-интернат)	0,139	0,019	0,018								
СОШ	0,300	0,041	0,044								
	Котельна	ая № 1/10		I	<u>I</u>						
Жилой дом ул. Гагарина.37	0,106	0,010	0,011								
Жилой дом ул. Гагарина.9	0,283	0,004	0,004								
Жилой дом ул. Гагарина.10	0,288	0,004	0,004								
Жилой дом ул. Гагарина.11	0,243	0,002	0,002								
Жилой дом ул. Гагарина.12	0,212	0,003	0,004								
Жилой дом ул. Гагарина.13 кв№2	0,214	0,002	0,002								
Жилой дом ул. Гагарина,14	0,207	0,003	0,003								
Жилой дом ул. Гагарина,15	0,176	0,002	0,003								
Жилой дом ул. Гагарина,16	0,163	0,001	0,002	0,15	0,29	1,17					
Жилой дом ул. Гагарина,17	0,088	0,001	0,001								
Жилой дом ул. Гагарина,19	0,071	0,001	0,001								
Жилой дом ул. Гагарина,25 кв-1	0,115	0,001	0,002								
Жилой дом ул. Новая,13	0,169	0,002	0,003								
Жилой дом ул. Новая,16	0,128	0,001	0,001								
Жилой дом ул. Новая,20	0,135	0,002	0,002								

В связи с отсутствием дефицита тепловой мощности на период подготовки схемы теплоснабжения, нового строительства, реконструкции, технического перевооружения и (или) модернизации, связанного с увеличением мощности источников тепловой энергии не планируется.

В связи с отсутствием нового строительства и отсутствия ограничений по использованию тепловой мощности, реконструкция источников тепловой энергии нецелесообразна.

В связи с отсутствием долгосрочных программ технического перевооружения источников тепловой энергии и формированием ежегодного и среднесрочного плана технического перевооружения, рекомендуется применять нижеперечисленные направления при формировании программ технического перевооружения.

Наименование мероприятия	Источник экономии
Внедрение новых водоподготовительных	- экономия топлива;
установок на источниках тепла	- уменьшение расхода электрической
	энергии (на привод сетевых насосов)
Внедрение метода глубокой утилизации	- экономия топлива;
тепла дымовых газов	- сокращение вредных выбросов в
	атмосферу
Внедрение экономичных способов	- экономия электрической энергии
регулирования работой вентиляторов	
Диспетчеризация в системах	- оптимизация режимов работы
теплоснабжения	тепловой сети;
	- сокращение времени проведения
	ремонтно-аварийных работ;
	- уменьшение количества
	эксплуатационного персонала
Замена устаревших электродвигателей на	- экономия электрической энергии;
современные	- снижение эксплуатационных
	затрат;
	- повышение качества и надёжности
	электроснабжения
Замена физически и морально устаревших	- экономия топлива;
котлов	- улучшение качества и надёжности
	теплоснабжения

регулирования в приводах лисктродни ателей в системах вентиляции, на насосных станциях и других объектах с переменной нагрузкой Ликвидация утечек и несанкционированного расхода воды Минимизация величины продувки котла Организация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств па теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических защиты трубопроводов тепловых сетей от коррозии Применение автоматических накимение теплоносителя; - снижение потерь тепла и теплоносителя; - снижение РСЭО Экономия топлива; - уменьшение вредных выбросов в атмосферу - экономия топлива; - уменьшение вредных выбросов в атмосферу - окономия топлива; - снижение потерь тепла и теплоносителя; - повышение надежности и долговечности теплообменных аппаратов - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия топлива; - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - учучшение вредных выбросов в атмосферу - экономия топлива; - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия экономия экстрической энергии - экономия топлива; - учучшение качества и повышение надёжности теплоснабжения - экономия топлива; - учучшение качества и повышение надёжности теплоснабжения - экономия топлива; - озанименна надёжности и и качества - ономия топлива; - озанименна надёжности теплоснабжения - экономия топлива; - озанименна надёжности теплоснабжения - экономия топлива; - озанименна надёжности на чачества - ономина топлива - озанименна надёжности и и качества - ономина топлива - объемаций; - создание надёжности и - озанименна надё	Использование систем частотного	- экономия электрической энергии;
на насосных станциях и других объектах с переменной нагрузкой Ликвидация утечек и несанкционированного расхода воды Минимизация величины продувки котла Организация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального днаметра	регулирования в приводах	- повышение надёжности и
переменной нагрузкой Ликвидация утечек и несанкционированного расхода воды Минимизация величины продувки котла Организация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального днажетра	электродвигателей в системах вентиляции,	увеличение сроков службы
Проведение наладки тепловых сетей Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Проведение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на коглоагрегатах. Составление Проведение режимно-наладочных работ диаметра Прокладка теплоовых сетей от комномия топлива; - симение потерь в сетях; - сижение потерь в сетях; - окономия топлива; - улучшение качества и надёжности теплоносителя; - овышение вредных выбросов в атмосферу - экономия топлива; - улучшение качества и надёжности теплоспабажения - экономия топлива; - улучшение качества и надёжности теплоспабажения - экономия топлива; - улучшение качества и надёжности теплоспабажения - экономия топлива; - снижение расхода теплоносителя; - повышение надежности и долговечности теплообменных аппаратов - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - снижение потерь тепла и теплоносителя; - окономия электрической энергии - экономия топлива; - снижение потерь тепла и теплоносителя; - снижение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - окономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - окономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - онижение теплопотерь в сетях;	на насосных станциях и других объектах с	оборудования
Минимизация величины продувки котла Минимизация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра → экономия топлива; - снижение расхода теплоносителя; - повышение надежности и долговечности теплообменных аппаратов - снижение РСЭО - экономия топлива; - снижение качества и повышение надежности объемных аппаратов - снижение качества и повышение надежности и долговечности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - экономия топлива; - снижение готорь в сетях; - снижение теплопотерь в сетях;	переменной нагрузкой	
	-	- экономия электрической энергии;
подпиточной воды; - повышение КПД установки Организация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра лемение теплопотерь в сетях; - окономия топлива;	несанкционированного расхода воды	- экономия воды
- повышение КПД установки Организация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - зкономия топлива; - оздание нормальных рабочих условий для персонала - экономия топлива; - озномоия топлива; - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - онижение РСЭО - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - онижение теплопотерь в сетях;	Минимизация величины продувки котла	- экономия топлива, реагентов,
Организация тепловизионного мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагретатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - экономия топлива; - экономия топлива; - экономия топлива; - экономия топлива; - онижение вредных выбросов в атмосферу - экономия топлива; - снижение расхода теплоносителя; - повышение надежности и полоносителя; - снижение потерь тепла и теплоносителя; - экономия электрической энергии - экономия топлива;		подпиточной воды;
мониторинга состояния ограждающих конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - предупреждение аварийных ситуаций; - создание нормальных рабочих условий для персонала - экономия топлива; - экономия топлива; - снижение потерь тепла и теплоносителя; - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива;		- повышение КПД установки
конструкций зданий и сооружений, оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра ситуаций; - создание нормальных рабочих условий для персонала - экономия топлива; - ожономия топлива; - снижение потерь тепла и теплоносителя; - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - оздание нормальных рабочих условий для персонала - окономия топлива; - снижение теплоснабжения - озкономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - озкономия топлива; - озкономия топлива; - озкономия топлива; - окономия топлива;	Организация тепловизионного	- экономия топлива;
оборудования. Оперативное устранение недостатков с помощью современных методов и материалов Проведение наладки тепловых сетей Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра — создание нормальных условий для персонала — экономия топлива; — экономия топлива; — снижение потерь тепла и теплоносителя; — снижение РСЭО — экономия электрической энергии — экономия топлива; — улучшение качества и повышение надёжности теплоснабжения — экономия топлива;	мониторинга состояния ограждающих	- предупреждение аварийных
методов и материалов Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра условий для персонала условий да условия и дектросов в атмосферу осимение вераных выбросов ветоновых ветоновной ветоновной ветон	конструкций зданий и сооружений,	ситуаций;
методов и материалов Проведение наладки тепловых сетей Проведение наладки тепловых сетей Предварительный подогрев питательной воды в котельной Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра условий для персонала - экономия топлива; - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение Теплопотерь в сетях;	оборудования. Оперативное устранение	- создание нормальных рабочих
Проведение наладки тепловых сетей - экономия топлива; - улучшение качества и надёжности теплоснабжения Предварительный подогрев питательной воды в котельной - экономия топлива; - уменьшение вредных выбросов в атмосферу Применение антинакипных устройств на теплообменниках - экономия топлива; - снижение расхода теплоносителя; - повышение надежности и долговечности теплообменных аппаратов Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии - снижение потерь тепла и теплоносителя; - снижение РСЭО Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - экономия топлива; - снижение теплопотерь в сетях;	недостатков с помощью современных	условий для персонала
- улучшение качества и надёжности теплоснабжения Предварительный подогрев питательной воды в котельной Применение антинакипных устройств на теплообменниках Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - улучшение качества и надёжности теплоснабжения - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение теплопотерь в сетях;	методов и материалов	
Предварительный подогрев питательной воды в котельной в котельной в сетей от коррозии выключателей в системах дежурного освещения проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт прокладка тепловых сетей оптимального диаметра тепловых сетей от коромия топлива; - снижение в сетях;	Проведение наладки тепловых сетей	- экономия топлива;
Предварительный подогрев питательной воды в котельной в системах дежурного освещения Прокладка тепловых сетей от на котлоагрегатах. Составление режимных карт воды в ситемах дежурного диаметра в сетей оптимального диаметра в сетей оптимального диаметра в сетей оптименение тепловот в сетях; в окномия топлива; - экономия топлива; - эконом		- улучшение качества и надёжности
□ уменьшение вредных выбросов в атмосферу Применение антинакипных устройств на теплообменниках Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - уменьшение вредных выбросов в атмосферу - экономия топлива; - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - уночемия топлива; - уночемия топлива; - онижение теплопотерь в сетях;		теплоснабжения
атмосферу Применение антинакипных устройств на теплообменниках - снижение расхода теплоносителя; - повышение надежности и долговечности теплообменных аппаратов Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - экономия топлива; - снижение теплопотерь в сетях;	Предварительный подогрев питательной	- экономия топлива;
Применение антинакипных устройств на теплообменниках - снижение расхода теплоносителя; - повышение надежности и долговечности теплообменных аппаратов - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение РСЭО - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение теплопотерь в сетях;	воды в котельной	- уменьшение вредных выбросов в
- снижение расхода теплоносителя; - повышение надежности и долговечности теплообменных аппаратов Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - снижение расхода теплоносителя; - повышение надежности теплообменных аппаратов - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - окономия топлива; - снижение теплопотерь в сетях;		атмосферу
- повышение надежности и долговечности теплообменных аппаратов Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - повышение надежности теплообменных аппаратов - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение теплопотерь в сетях;	Применение антинакипных устройств на	- экономия топлива;
Долговечности теплообменных аппаратов Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра долговечности теплообменных аппаратов - снижение потерь тепла и теплоносителя; - снижение РСЭО - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение теплопотерь в сетях;	теплообменниках	- снижение расхода теплоносителя;
Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии - снижение РСЭО Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - снижение теплопотерь в сетях;		- повышение надежности и
Применение средств электрохимической защиты трубопроводов тепловых сетей от коррозии - снижение РСЭО Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - снижение теплопотерь в сетях;		долговечности теплообменных
защиты трубопроводов тепловых сетей от коррозии - снижение РСЭО Применение автоматических - экономия электрической энергии выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - улучшение качества и повышение надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - экономия топлива; - снижение теплопотерь в сетях;		аппаратов
коррозии - снижение РСЭО Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - снижение теплопотерь в сетях;	Применение средств электрохимической	- снижение потерь тепла и
Применение автоматических выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - экономия электрической энергии - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение теплопотерь в сетях;	защиты трубопроводов тепловых сетей от	теплоносителя;
выключателей в системах дежурного освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - экономия топлива; - экономия топлива; - экономия топлива; - снижение теплопотерь в сетях;	коррозии	- снижение РСЭО
освещения Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт Прокладка тепловых сетей оптимального диаметра - экономия топлива; - улучшение качества и повышение надёжности теплоснабжения - экономия топлива; - снижение теплопотерь в сетях;	Применение автоматических	- экономия электрической энергии
Проведение режимно-наладочных работ на котлоагрегатах. Составление режимных карт - улучшение качества и повышение надёжности теплоснабжения прокладка тепловых сетей оптимального диаметра - снижение теплопотерь в сетях;	выключателей в системах дежурного	
на котлоагрегатах. Составление - улучшение качества и повышение режимных карт надёжности теплоснабжения прокладка тепловых сетей оптимального диаметра - снижение теплопотерь в сетях;	освещения	
режимных карт надёжности теплоснабжения Прокладка тепловых сетей оптимального диаметра - экономия топлива; - снижение теплопотерь в сетях;	Проведение режимно-наладочных работ	- экономия топлива;
Прокладка тепловых сетей оптимального - экономия топлива; - снижение теплопотерь в сетях;	на котлоагрегатах. Составление	- улучшение качества и повышение
диаметра - снижение теплопотерь в сетях;	режимных карт	надёжности теплоснабжения
	Прокладка тепловых сетей оптимального	- экономия топлива;
	диаметра	- снижение теплопотерь в сетях;
		- повышение надёжности и качества

	теплоснабжения
Своевременное устранение повреждений	- экономия топлива;
изоляции паропроводов и	- сокращение потерь тепловой
конденсатопроводов с помощью	энергии
современных технологий и материалов	
Устранение присосов воздуха в газоходах и	- экономия топлива
обмуровках котлов	

Вывод источников тепловой энергии из эксплуатации, консервации и демонтаж избыточных источников тепловой энергии не планируется.

Для возможности переоборудования и строительства источников с комбинированной выработкой электрической и тепловой энергии необходим следующий перечень документов:

- решения по строительству генерирующих мощностей с комбинированной выработкой тепловой и электрической энергии, утвержденные в региональных схемах и программах перспективного развития электроэнергетики, разработанные в соответствии с Постановлением Российской Федерации от 17 октября № 823 «О схемах и программах перспективного развития электроэнергетики»;
- решения по строительству объектов с комбинированной выработкой тепловой и электрической энергии, утвержденных в соответствии с договорами поставки мощности;
- решения по строительству объектов генерации тепловой мощности, утвержденных в программах газификации поселения, городских округов;
- решения связанные с отказом подключения потребителей к существующим электрическим сетям.

7. ПРЕДЛОЖЕНИЯ ПО НОВОМУ СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ И (ИЛИ) МОДЕРНИЗАЦИИ ТЕПЛОВЫХ СЕТЕЙ

Источников тепловой энергии с дефицитом тепловой мощности на территории поселения не выявлено. В связи с этим реконструкция и строительство тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности не планируется.

Строительство новых тепловых сетей в виду отсутствия перспективного строительства на рассматриваемый период не планируется.

В связи с отсутствием технической возможности и экономической целесообразности, предложения по обеспечению возможностей поставок тепловой энергии от различных источников, не рассматриваются.

Действующие нормативные документы требуют периодического проведения освидетельствования тепловых сетей, а также по истечении нормативного срока эксплуатации (25 лет) с целью выявления мест утонения трубопроводов более чем на 20 % от первоначальной толщины их прочностной расчет и замену участков, имеющих недостаточный ресурс. В таблице 7.1 приведены периоды рекомендуемой замены трубопроводов по истечению нормативного срока эксплуатации.

Таблица 7.1 – Информация о периодах по рекомендуемой замене трубопроводов

Наименование участка	диаметр проход, Dy,	Общая протяженность труб-дов участка сети в двухтр-ом исчислении, L, м	участка труо- да в эксплуатацию (перекладки)	Нормативны й год замены	Рекомендуем ый год замены
	Теп	лотрасса от котельной	Nº 1/09		
от котельной до т. 1	200	6,2	1988	2013	2013
от т.1 до т.2	125	44,1	1988	2013	2013
от т.2 до т.3	125	24	1988	2013	2013
от т.3 до т. 4	125	66,8	1988	2013	2013
от т.4 до т. 5	100	62	2004	2029	2029
от т.5 до т. 6	65	47,6	2004	2029	2029

от т.6 до ж.д. №10 ул. Ленина	50	38	2004	2029	2029
от т.6 до т.7	50	7	2004	2029	2029
от т.7 до ж.д. №9 ул. Ленина	50	21	2004	2029	2029
от т.7 до т.7а	50	57,75	2010	2035	2035
от т.7а до т.7б	25	4,25	2018	2043	2043
от т.7б до т.7в под дорогой	25	10	2018	2043	2043
от т.7в до т.7г	25	4,25	2018	2043	2043
от т.7г до т.8	50	24,75	2010	2035	2035
от т.8 до здания ФАП	50	5	2010	2035	2035
от т.4 до т.9	65	28	2004	2029	2029
от т.9 до т.9а	50	25	2012	2037	2037
от т.9а до ж.д. №3 ул. Островского	50	7,6	2012	2037	2037
от т.9 до т.10	50	81,8	2017	2042	2042
от т.10 до т.10а	50	22	2004	2029	2029
от т.10а до ж.д. №4 ул. Островского	50	10,1	2004	2029	2029
от т.5 до т.11	65	39	1988	2013	2013
от т.11 до т.12	65	6	1988	2013	2013
от т.12 до т.13	65	17	1988	2013	2013
от т.13 до т.13а	50	28	1988	2013	2013
от т.13а до здания д/с	50	0,5	1988	2013	2013
от т.13 до т.13б под дорогой	65	4,5	2013	2038	2038
от т.13б до т.13в	65	23,5	1988	2013	2013
от т.13в до т.13г под дорогой	65	5	2012	2037	2037
от т.13г до т.14	65	4	1988	2013	2013
от т.14 до т.15	65	7	1988	2013	2013
от т.15 до т.16	65	16,2	1988	2013	2013
от т.16 до ж.д. №5 ул. Ленина	50	2,5	1988	2013	2013

от т.16 до ж.д. №6	50	23	1988	2013	2013
ул.Ленина от т.1 до т.17	65	51,8	2013	2038	2038
от т.17 до ж.д. №8 ул. Дубковская	50	3,7	2013	2038	2038
от т.17 до т.18	50	23	2013	2038	2038
от т.18 до ж.д. №7 ул.Дубковская	50	1	2013	2038	2038
от т.18 до т.18а	25	1,5	2013	2038	2038
от т.18а до т.19	25	17	2013	2038	2038
от т.19 до т.20	25	72,6	2013	2038	2038
от т.20 до т.21	25	3,1	2013	2038	2038
от т.21 до ж.д. №4 ул. Дубковская	25	36	2013	2038	2038
от т.1 до т.22	100	58	2017	2042	2042
от т.22 до т.22а	50	28,5	2009	2034	2034
от т.22а до ж.д,№2 ул. Дубковская	50	4,5	2009	2034	2034
от т.22 до т.23	100	2	2017	2042	2042
от т.23 до т.24	100	7,7	2017	2042	2042
от т.24 до ж.д,№1 ул. Дубковская	50	8	2009	2034	2034
от т.24 до т.25	100	73	2017	2042	2042
от т.25 до т.26	100	205	2017	2042	2042
от т.26 до т.27	100	8,6	2017	2042	2042
от т.27 до 27а	80	12,7	2016	2041	2041
от т.27а до здания школы	80	6,5	2016	2041	2041
от т.27 до т.28	50	9,1	2016	2041	2041
от т.28 до т.29	50	4	2016	2041	2041
от т.29 до ж.д.№27а ул.Школьная	50	42	2016	2041	2041
Теплотрасса от котельной № 1/10					
от кот. АМК №10 до т.1		13,5	2016	2041	2041
от т.1 до т.1а	50	32	2011	2036	2036
от т.1а до т.1б	50	6	2011	2036	2036

от т.1б до т.2	50	7,7	2011	2036	2036
от т.2 до т.3	50	35	2011	2036	2036
от т.3 до т.3а	50	10	2011	2036	2036
от т.3а до т. 4	40	30,4	2012	2037	2037
от т.4 до т.5	40	25,5	2012	2037	2037
от т.5 до т.5а	40	48,7	2012	2037	2037
от т.5а до т.5б под дорогой	40	8	2012	2037	2037
от т.5б до т.6	32	15,9	2012	2037	2037
от т.6 до ж.д. ул. Новая	32	10,2	2012	2037	2037
от т.5 до т.7	40	17	2012	2037	2037
от т.7 до т.8	40	23	2012	2037	2037
от т.8 до т.8а	40	4	2012	2037	2037
от т.8а до ж.д.№20 ул. Новая	40	0,6	2012	2037	2037
от т.7 до т.7а	40	4	2012	2037	2037
от т.7а до т.7б	40	23,2	2012	2037	2037
от т.7б до ж.д. №25 ул. Новая	40	8	2012	2037	2037
от т.2 до т.9	50	17,5	2011	2036	2036
от т.9 до т.9а	50	10,16	2011	2036	2036
от т.9а до ж.д. №19, кв.1 ул. Гагарина	50	1,5	2011	2036	2036
от т.9а до т.9б	50	19,84	2011	2036	2036
от т.9б до ж.д. №19, кв. 2 ул. Гагарина	50	1,5	2011	2036	2036
от т.9 до т.10	50	26	2011	2036	2036
от т.10 до т.11	50	8	2011	2036	2036
от т.11 до ж.д.№16 ул. Новая	50	38	2011	2036	2036
от т.1 до т.12	100	60,4	2011	2036	2036
от т.12 до т.13	100	52,5	2011	2036	2036
от т.13 до ж.д.№37 ул. Гагарина	50	6	2011	2036	2036
от т.13 до т.14	100	17	2011	2036	2036
от т.14 до т.15	50	15,8	2011	2036	2036

от т.15 до т.16 50 11,4 от т.16 до ж.д.№16 ул. Гагарина 50 6	2011 2011	2036	2036
ул. Гагарина 50 6	2011		
ул. Гагарина	_011	2036	2036
от т.16 до т.17 50 49,7	2011	2036	2036
от т.17 до ж.д.№14, кв.1 ул. Гагарина 50	2011	2036	2036
от т.17 до т.18 50 12,2	2011	2036	2036
от т.18 до ж.д.№14 ,кв.2 ул. Гагарина 50	2011	2036	2036
от т.18 до т.19 50 29,5	2011	2036	2036
от т.19 до ж.д.№12, кв.1 ул. Гагарина 50	2011	2036	2036
от т.19 до т.20 50 8,7	2011	2036	2036
от т.20 до ж.д.№12, кв.2 ул. Гагарина 50	2011	2036	2036
от т.20 до т.21 50 29,5	2011	2036	2036
от т.21 до ж.д.№10, кв.1 ул. Гагарина 50	2011	2036	2036
от т.21 до т.22 50 8,2	2011	2036	2036
от т.22 до ж.д.№10, кв.2 ул. Гагарина 50	2011	2036	2036
от т.15 до т.23 50 5	2019	2044	2044
от т.23 до т.24 под дорогой 50 7,6	2019	2044	2044
от т.24 до т.25 50 20	2008	2033	2033
от т.25 до т.26 50 14,1	2008	2033	2033
от т.26 до ж.д.№15, кв.1 ул.Гагарина 25	2011	2036	2036
от т.26 до т.27 50 17,7	2008	2033	2033
от т.27 до ж.д.№15, кв.2 ул.Гагарина 25 4	2011	2036	2036
от т.27 до т.28 50 27,4	2008	2033	2033
от т.28 до ж.д.№13, кв.1 ул.Гагарина 25 4	2011	2036	2036
от т.28 до т.29 50 35,7	2008	2033	2033
от т.29 до ж.д.№11, кв.1 ул.Гагарина 25 4	2011	2036	2036
от т.29 до т.30 50 17,6	2008	2033	2033

от т.30 до ж.д.№11, кв.2 ул.Гагарина	25	4	2011	2036	2036
от т.30 до т.31	50	18,8	2008	2033	2033
от т.31 до ж.д.№9, кв.1 ул.Гагарина	25	4	2011	2036	2036
от т.31 до т.32	50	17,6	2008	2033	2033
от т.32 до ж.д.№9, кв.2 ул.Гагарина	25	4	2011	2036	2036
Теплотрасса от котельной КГОБУ Первомайской КШИ					
от котельной до КГОБУ Первомайской КШИ	н/д	44	1989 (2020)	2045	2045

В связи с отсутствием долгосрочных программ нового строительства и реконструкции тепловых сетей и формированием ежегодного и среднесрочного плана нового строительства и реконструкции, рекомендуется применять нижеперечисленные направления при формировании программ нового строительства, реконструкции и (или) модернизации.

Таблица 7.2

Наименование мероприятия	Источник экономии
Диспетчеризация в системах	- экономия тепловой энергии;
теплоснабжения	- сокращение времени на проведение
	аварийно-ремонтных работ;
	- сокращение эксплуатационных
	затрат (уменьшение
	эксплуатационного персонала)
Замена устаревших электродвигателей на	- экономия электрической энергии;
современные энергоэффективные	- снижение эксплуатационных затрат;
	- повышение качества и надёжности
	электроснабжения
Использование теплообменных аппаратов	- уменьшение капитальных затрат на
ТТАИ	строительство ТП;
	- повышение надёжности
	теплоснабжения

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СУНЯТСЕНСКОЕ СЕЛЬСКОЕ ПОСЕЛЕНИЕ МИХАЙЛОВСКОГО РАЙОНА ПРИМОРСКОГО КРАЯ

Наладка тепловых сетей	- экономия тепловой энергии;
	- улучшение качества и надёжности
	теплоснабжения
Нанесение антикоррозионных покрытий в	- экономия тепловой энергии;
конструкции теплопроводов с ППУ-	- улучшение качества и надёжности
изоляцией	теплоснабжения
Организация своевременного ремонта	- снижение потерь тепловой энергии и
коммуникаций систем теплоснабжения	теплоносителя;
	- снижение объёмов подпиточной
	воды;
	- повышение надежности и
	долговечности тепловых сетей
Применение антинакипных устройств на	- экономия теплоносителя;
теплообменниках	- повышение надежности и
	долговечности работы
	теплообменных аппаратов;
	- повышение надёжности и качества
	теплоснабжения
Прокладка тепловых сетей оптимального	- снижение теплопотерь в сетях;
диаметра	- повышение надёжности и качества
	теплоснабжения
Системы дистанционного контроля	- уменьшение количества аварийных
состояния ППУ трубопроводов	ситуаций и времени их устранения;
	- повышение надёжности и качества
	теплоснабжения

8. ПРЕДЛОЖЕНИЯ ПО ПЕРЕВОДУ ОТКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ (ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ) В ЗАКРЫТЫЕ СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Открытые системы теплоснабжения отсутствуют.

9. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ

Данный раздел содержит перспективные топливные балансы для каждого источника тепловой энергии, расположенного в границах поселения по видам основного, резервного и аварийного топлива.

Для источников тепловой энергии расположенных на территории муниципального образования Сунятсенское сельское поселение основным видом топлива является уголь.

В таблице 9.1 приведены результаты расчета перспективных годовых расходов топлива в разрезе каждого источника тепловой энергии.

Котельная №1/9	Котельная №1/10
THT	THT
1 133,866	183,506
1 133,866	183,506
1 133,866	183,506
1 133,866	183,506
1 133,866	183,506
1 133,866	183,506
1 133,866	183,506
	THT 1 133,866 1 133,866 1 133,866 1 133,866 1 133,866 1 133,866

В таблице 9.2 произведен расчет нормативного неснижаемого запаса основного топлива в разрезе каждого теплоисточника.

Нормативный неснижаемый запас топлива — запас топлива, обеспечивающий работу котельной в режиме "выживания" с минимальной расчетной тепловой нагрузкой и составом оборудования, позволяющим поддерживать готовность к работе всех технологических схем и плюсовые температуры в главном корпусе,

вспомогательных зданиях и сооружениях.

Таблица 9.2 – Основные данные и результаты расчета создания нормативного неснижаемого запаса топлива

Вид топлива	Среднесуточная выработка теплоэнергии, Гкал/сутки	Норматив удельного расхода топлива, т.у.т./Гкал	Среднесуточный расход топлива, т.у.т.	Коэффициент перевода натурального топлива в условное	Кол-во суток для расчета	ННЗТ, тонн	
Котельная № 1/9							
Уголь	5,73	0,240	1,31	2,28	14	8,07	
Котельная № 1/10							
Уголь	0,93	0,1	0,5	0,706	14	15,00	

В таблице 9.3 произведен расчет нормативного эксплуатационного запаса основного вида топлива в разрезе каждого теплоисточника.

Нормативный эксплуатационный запас топлива — запас топлива, обеспечивающий надежную и стабильную работу котельной и вовлекаемый в расход для обеспечения выработки тепловой энергии в осеннее — зимний период (I и IV кварталы).

Таблица 9.3 — Основные данные и результаты расчета создания нормативного эксплуатационного запаса топлива

Вид топлива	Среднесуточная выработка теплоэнергии, Гкал/сутки	Норматив удельного расхода топлива, т.у.т./Гкал	Среднесуточный расход топлива, т.у.т.	Коэффициент перевода натурального топлива в условное	Кол-во суток для расчета	ННЗТ, тонн		
Котельная № 1/9								
Уголь	5,73	0,240	1,31	2,28	30	17,26		
Котельная № 1/10								
Уголь	0,93	0,1	0,5	0,706	30	5,04		

10. ОЦЕНКА НАДЕЖНОСТИ ТЕПЛОСНАБЖЕНИЯ

Общие положения

Эффективность работы тепловой сети зависит от ее конструкции, протяженности, срока и условий эксплуатации. На надежность сети влияют и факторы окружающей среды: почва, грунтовые воды и т.д.

Основные предпосылки, снижающие надежность тепловых сетей:

- Способ прокладки и конструкция тепловых сетей;
- Материал применяемых труб;
- Гидроизоляция и защитные покрытия;
- Теплоизоляция;
- Коррозионная активность грунта и грунтовых вод;
- Температура теплоносителя;
- Воздействие механических усилий;
- Воздействие блуждающих токов;
- Уровень эксплуатации трубопроводов;
- Уровень резервирования.

Десять выделенных предпосылок можно объединить в более крупные и емкие причины повреждений, которые и были исследованы: наружная коррозия, внутренняя коррозия, длительная эксплуатация и случайные причины.

Трубопроводы тепловой сети соприкасаются с грунтом и грунтовыми водами, что приводит к электрохимической наружной коррозии металла. Интенсивность этого процесса зависит от первых пяти предпосылок:

- 1. Способа прокладки и конструкции тепловых сетей.
- 2. Материала труб и арматуры.
- 3. Наличия гидроизоляции и защитных покрытий.
- 4. Конструкции и материала теплоизоляции.
- 5. Коррозионной активности грунта и грунтовых вод.

Существующие конструкции гидроизоляционного покрытия, подвижных и неподвижных опор, проходы в камеры и прочее позволяют соприкасаться металлу

труб с почвенными водами, что приводит к возникновению, при определенных обстоятельствах, электрохимической коррозии и усилению коррозии от блуждающих токов.

Регулирование Влияние температуры. отпуска тепла, как правило, осуществляется качественным путем, то есть за счет изменения температуры теплоносителя в подающем и обратном трубопроводе. Влияние температуры сказывается на процессе коррозии металла в зависимости от того, происходит ли процесс коррозии с кислородной или с водородной поляризацией. В почвенных условиях вследствие слабой концентрации растворов кислорода следует ожидать процессов коррозии, происходящих с кислородной поляризацией. При этом скорость наружной коррозии растет с увеличением температуры примерно до 80°C. Начиная с этой температуры и выше скорость коррозии снижается вследствие резкого уменьшения концентрации растворенного кислорода в воде.

Влияние внутренних и внешних растягивающих усилий и вибрации. Коррозия металла усиливается, если он подвергается воздействию внутренних и внешних растягивающих усилий или вибрации. В зависимости от температуры и величины показателя рН коррозию от растягивающих напряжений можно ожидать в сварных швах и стыках.

Влияние положения уровня грунтовых вод и удельного сопротивления почвы. Положение уровня грунтовых вод относительно глубины прокладки труб тепловой сети также оказывает существенное влияние на скорость их коррозии. Наиболее неблагоприятным оказывается вариант, когда трубопроводы тепловых сетей проложены на уровне грунтовых вод и периодически (в зависимости от времени года и погодных условий) подвергаются увлажнению.

Причинами снижения надежности системы теплоснабжения являются внезапные отказы, заключающиеся в нарушении работы оборудования и отражающиеся на теплоснабжении потребителей.

Отказы, как правило, возникают, если перегрузки (или стандартные нагрузки) испытывает слабое звено всей системы. Этот процесс является случайным; поэтому к нему применяют закон Пуассона. Если представить графически изменение нагрузки N(S) и изменение прочности системы P(S) (или ее элемента),

то их совпадение, в теории надежности называемое «треугольником отказов», приводит к отказу работы системы.

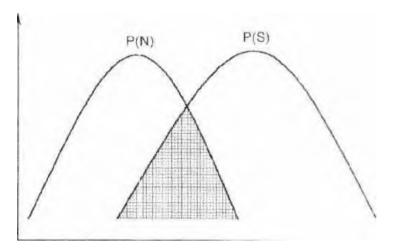


Рисунок 10.1 – Треугольник отказов

Надежность системы теплоснабжения

Данные по авариям на тепловых сетях за последние пять лет не предоставлены.

В настоящее время наиболее эффективным методом повышения надежности системы теплоснабжения следует считать отбраковку в летний период ослабленных коррозией участков теплосети, которая производится путем гидравлического испытания отдельных участков трубопроводов при повышенном давлении.

С целью сохранения и повышения надежности системы теплоснабжения на тепловых сетях, рекомендованы следующие мероприятия:

1. Произвести полную инвентаризацию всего оборудования и тепловых сетей. Базы данных системы должны содержать полную информацию о каждом участке тепловых сетей — год строительства и последнего капитального ремонта, рабочие режимы (температура, давление), способ прокладки, сведения о материале труб и тепловой изоляции, даты и характер повреждений, способы их устранения, а также результаты диагностики с информацией об остаточном ресурсе каждого участка.

Скорректировать подход к планированию и проведению плановопредупредительных ремонтов на тепловых сетях. При составлении планов

капитальных ремонтов и модернизации одновременно должны учитываться несколько факторов для конкретного участка тепловых сетей:

- срок службы теплосети;
- диапазоны рабочих давлений и температур;
- статистика аварийных повреждений;
- результаты тепловой аэрофотосъемки;
- результаты диагностики.
- 2. Проанализировать существующие методы по защите от коррозии трубопроводов в наиболее проблемных зонах. Принять меры по проведению противокоррозионной защиты, к примеру, установке на трубопровод анодовпротекторов и изолирующих фланцев в случае отсутствия или ненадлежащей установки таковых.
- 3. Пристальное внимание уделять предварительной подготовке трубопроводов и материалов. Детали и элементы трубопроводов, которые используются при проведении аварийного ремонта, должны иметь согласно требованиям СНиП 3.05.03-85 и СНиП 3.04.03-85 защитное противокоррозионное покрытие, нанесенное в заводских условиях в соответствии с требованиями технических условий и проектной документации.
- 4. После проведения диагностики необходимо по ее результатам заменить наиболее изношенные трубопроводы, изолированные минеральной ватой, трубопроводами, выполненными по современной технологии, изолированные пенополиуретаном (ППУ) и имеющие специальную полиэтиленовую оболочку, особую конструкцию стыковых соединений и систему сигнализации.

11. ОБОСНОВАНИЕ ИНВЕСТИЦИЙ В СТРОИТЕЛЬСТВО, РЕКОНСТРУКЦИЮ, ТЕХНИЧЕСКОЕ ПЕРЕВООРУЖЕНИЕ И (ИЛИ) МОДЕРНИЗАЦИЮ

Величина инвестиций в строительство и техническое перевооружение для предприятий, осуществляющих регулируемые виды деятельности, определяется Федеральной службой по тарифам РФ, либо соответствующей региональной службой и включается в цену производимой продукции, как инвестиционная составляющая в тарифе. По отраслевым методикам расчета себестоимости в электроэнергетике инвестиционная составляющая рассчитывается как часть прибыли и выделяется отдельной строкой, отдельно от общей прибыли.

Однако в связи с отсутствием долгосрочной инвестиционной программы по развитию теплосетевого и котельного хозяйства, а также высокой долей неопределенности относительно предельно допустимых индексов роста тарифа на услуги ЖКХ, включение в схемы теплоснабжения конкретных объемов инвестиций по соответствующим периодам, нецелесообразно.

Профильному региональному ведомству, отвечающему за установление тарифа, рекомендуется учитывать максимально возможный объем инвестиционной составляющей, учитывая высокую степень износа основных фондов.

12. ИНДИКАТОРЫ РАЗВИТИЯ ТЕПЛОСНАБЖЕНИЯ ПОСЕЛЕНИЯ

		Существующее	
NC.	Индикаторы развития системы	положение	Перспективные
№	теплоснабжения, ед. изм.	(базовый	величины
		период)	
1	2	3	4
	количество прекращений подачи тепловой		
1	энергии, теплоносителя в результате	0	0
	технологических нарушений на тепловых		
	сетях, ед.		
	количество прекращений подачи тепловой		
2	энергии, теплоносителя в результате	0	0
	технологических нарушений на источниках		
	тепловой		
	энергии, ед.		
	удельный расход условного топлива на		
3	единицу тепловой энергии, отпускаемой с	-	-
	коллекторов источников тепловой энергии,		
	кг.у.т./Гкал		
	отношение величины технологических		
4	потерь тепловой энергии, теплоносителя к		
	материальной характеристике тепловой сети,		
	Гкал/м.м		
5	коэффициент использования установленной	_	_
	тепловой мощности, ч/год		
	удельная материальная характеристика		
6	тепловых сетей, приведенная к расчетной		
	тепловой нагрузке,		
	м.м./Гкал/ч		
7	доля тепловой энергии, выработанной в	0	0
	комбинированном режиме, %	O .	U
8	удельный расход условного топлива на		
	отпуск электрической энергии, кг.у.т./кВт		
9	коэффициент использования теплоты	_	_
	топлива, % (для ТЭЦ)	_	_

СИСТЕМ

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СУНЯТСЕНСКОЕ СЕЛЬСКОЕ ПОСЕЛЕНИЕ МИХАЙЛОВСКОГО РАЙОНА ПРИМОРСКОГО КРАЯ

10	доля отпуска тепловой энергии, осуществляемой потребителям по приборам учета, в общем объеме отпущенной тепловой энергии, %	0	100
11	средневзвешенный срок эксплуатации тепловых сетей, лет	28	5
12	отношение материальной характеристики тепловых сетей, реконструированных за год, к общей материальной характеристике тепловых сетей, %	0	100
13	отношение установленной тепловой мощности оборудования источников тепловой энергии, реконструированного за год, к общей установленной тепловой мощности источников тепловой энергии, %	0	100

13. ЦЕНОВЫЕ (ТАРИФНЫЕ) ПОСЛЕДСТВИЯ

В соответствии с методическими рекомендациями к схемам теплоснабжения тарифно-балансовую модель рекомендуется формировать в составе следующих показателей, отражающих их изменение по годам реализации схемы теплоснабжения:

- Индексы-дефляторы МЭР;
- Баланс тепловой мощности;
- Баланс тепловой энергии;
- Топливный баланс;
- Баланс теплоносителей;
- Балансы электрической энергии;
- Балансы холодной воды питьевого качества;
- Тарифы на покупные энергоносители и воду;
- Производственные расходы товарного отпуска;
- Производственная деятельность;
- Инвестиционная деятельность;
- Финансовая деятельность;
- Проекты схемы теплоснабжения.

Тарифно-балансовые расчетные модели теплоснабжения потребителей системе теплоснабжения муниципального образования каждой Сунятсенское сельское поселение, рассчитаны в тарифе на тепловую энергию, поставляемую потребителям краевого государственного унитарного предприятия «Примтеплоэнерго» и установлены Департаментом по тарифам Приморского края от 20.12.2018 г. № 70/6 «Об установлении тарифов на тепловую энергию (мощность) поставляемую краевым государственным предприятием унитарным «Примтеплоэнерго» на период регулирования с 2019 по 2023 годы».

14. РЕЕСТР ЕДИНЫХ ТЕПЛОСНАБЖАЮЩИХ ОРГАНИЗАЦИЙ

Энергоснабжающая (теплоснабжающая) организация — коммерческая организация независимо от организационно-правовой формы, осуществляющая продажу абонентам (потребителям) по присоединенной тепловой сети произведенной или (и) купленной тепловой энергии и теплоносителей (МДС 41-3.2000 Организационно-методические рекомендации по пользованию системами коммунального теплоснабжения в городах и других населенных пунктах Российской Федерации).

Решение по установлению единой теплоснабжающей организации осуществляется на основании критериев определения единой теплоснабжающей организации, установленных Постановлением РФ от 08.08.2012 № 808 "Об организации теплоснабжения в Российской Федерации и о внесении изменений в некоторые акты Правительства Российской Федерации".

В соответствии со статьей 2 пунктом 28 Федерального закона 190 «О теплоснабжении» теплоснабжающая «...единая организация В системе теплоснабжения (далее - ЕТО) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании которые установлены критериев И В порядке, правилами организации теплоснабжения, утвержденными Правительством Российской Федерации».

В соответствии со статьей 6 пунктом 6 Федерального закона 190 «О теплоснабжении» «... к полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относится утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации».

Предложения по установлению единой теплоснабжающей организации осуществляются на основании критериев определения единой теплоснабжающей организации, установленных Постановлением РФ от 08.08.2012 № 808 "Об организации теплоснабжения в Российской Федерации и о внесении изменений в некоторые акты Правительства Российской Федерации". Для присвоения организации статуса единой теплоснабжающей организации на территории поселения, городского округа лица, владеющие на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями, подают в уполномоченный орган в течение 1 месяца с даты опубликования (размещения) в установленном порядке проекта схемы теплоснабжения, а также с даты опубликования (размещения) сообщения, указанного в пункте 17 настоящих Правил, заявку на присвоение организации статуса единой теплоснабжающей организации с указанием зоны ее деятельности.

К заявке прилагается бухгалтерская отчетность, составленная на последнюю отчетную дату перед подачей заявки, с отметкой налогового органа об ее принятии. Уполномоченные органы обязаны в течение 3 рабочих дней с даты окончания срока для подачи заявок разместить сведения о принятых заявках на сайте поселения, городского округа, на сайте соответствующего субъекта Российской Федерации в информационно-телекоммуникационной сети «Интернет» (далее – официальный сайт).

В случае если органы местного самоуправления не имеют возможности размещать соответствующую информацию на своих официальных сайтах, необходимая информация может размещаться на официальном сайте субъекта Российской Федерации, в границах которого находится соответствующее муниципальное образование. Поселения, входящие в муниципальный район, могут размещать необходимую информацию на официальном сайте этого муниципального района.

В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подана 1 заявка от лица, владеющего на праве

собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей зоне деятельности единой теплоснабжающей организации присваивается указанному лицу. В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано несколько заявок от лиц, владеющих на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей зоне деятельности единой теплоснабжающей организации, уполномоченный орган присваивает статус единой теплоснабжающей организации в соответствии с нижеуказанными критериями.

Критерии и порядок определения единой теплоснабжающей организации

1 критерий: владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации

В случае если заявка на присвоение статуса единой теплоснабжающей организации подана организацией, которая владеет на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации, статус единой теплоснабжающей организации присваивается данной организации.

В случае если заявки на присвоение статуса единой теплоснабжающей организации поданы от организации, которая владеет на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью, и от организации, которая владеет на праве собственности или ином законном основании тепловыми сетями с наибольшей емкостью в границах

	зоны деятельности единой теплоснабжающей организации, статус единой теплоснабжающей организации присваивается той организации из указанных, которая имеет наибольший размер собственного капитала. В случае если размеры собственных капиталов этих организаций различаются не более чем на 5 процентов, статус единой теплоснабжающей организации присваивается организации, способной в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения.
2 критерий: размер собственного капитала	Размер собственного капитала определяется по данным бухгалтерской отчетности, составленной на последнюю отчетную дату перед подачей заявки на присвоение организации статуса единой теплоснабжающей организации с отметкой налогового органа о ее принятии
3 критерий: способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения	Способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения определяется наличием у организации технических возможностей и квалифицированного персонала по наладке, мониторингу, диспетчеризации, переключениям и оперативному управлению гидравлическими и температурными режимами системы теплоснабжения и обосновывается в схеме теплоснабжения.

В случае если организациями не подано ни одной заявки на присвоение статуса единой теплоснабжающей организации, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей тепловой емкостью.

Единая теплоснабжающая организация при осуществлении своей деятельности обязана:

- 1. Заключать теплоснабжения любыми И исполнять договоры обратившимися к ней потребителями тепловой энергии, теплопотребляющие установки которых находятся в данной системе теплоснабжения при условии потребителями указанными выданных ИМ В соответствии законодательством о градостроительной деятельности технических подключения к тепловым сетям.
- 2. Заключать и исполнять договоры поставки тепловой энергии (мощности) и (или) теплоносителя в отношении объема тепловой нагрузки, распределенной в соответствии со схемой теплоснабжения.
- 3. Заключать и исполнять договоры оказания услуг по передаче тепловой энергии, теплоносителя в объеме, необходимом для обеспечения теплоснабжения потребителей тепловой энергии с учетом потерь тепловой энергии, теплоносителя при их передаче.

Организация может утратить статус единой теплоснабжающей организации в следующих случаях:

- 1. Систематическое (3 и более раза в течение 12 месяцев) неисполнение или ненадлежащее исполнение обязательств, предусмотренных условиями договоров. Факт неисполнения или ненадлежащего исполнения обязательств должен быть подтвержден вступившими в законную силу решениями федерального антимонопольного органа, и (или) его территориальных органов, и (или) судов.
- 2. Принятие в установленном порядке решения о реорганизации (за исключением реорганизации в форме присоединения, когда к организации, имеющей статус единой теплоснабжающей организации, присоединяются другие реорганизованные организации, а также реорганизации в форме преобразования)

или ликвидации организации, имеющей статус единой теплоснабжающей организации.

- 3. Принятие арбитражным судом решения о признании организации, имеющей статус единой теплоснабжающей организации, банкротом.
- 4. Прекращение права собственности или владения имуществом, по основаниям, предусмотренным законодательством Российской Федерации.
- 5. Несоответствие организации, имеющей статус единой теплоснабжающей организации, критериям, связанным с размером собственного капитала, а

также способностью в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения;

6. Подача организацией заявления о прекращении осуществления функций единой теплоснабжающей организации.

Лица, права и законные интересы которых нарушены по основаниям, незамедлительно информируют об этом уполномоченные органы для принятия ими решения об утрате организацией статуса единой теплоснабжающей организации. К указанной информации должны быть приложены вступившие в законную силу решения федерального антимонопольного органа, и (или) его территориальных органов, и (или) судов.

Уполномоченное должностное лицо организации, имеющей статус единой теплоснабжающей организации, обязано уведомить уполномоченный орган о возникновении фактов, являющихся основанием для утраты организацией статуса единой теплоснабжающей организации, в течение 3 рабочих дней со дня принятия уполномоченным органом решения о реорганизации, ликвидации, признания организации банкротом, прекращения права собственности или владения имуществом организации.

Организация, имеющая статус единой теплоснабжающей организации, вправе подать в уполномоченный орган заявление о прекращении осуществления функций единой теплоснабжающей организации, за исключением если организациями не подано ни одной заявки на присвоение статуса единой теплоснабжающей организации, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей тепловой емкостью. Заявление о прекращении функций

единой теплоснабжающей организации может быть подано до 1 августа текущего года.

Уполномоченный орган обязан принять решение об утрате организацией статуса единой теплоснабжающей организации в течение 5 рабочих дней со дня получения от лиц, права и законные интересы которых нарушены по основаниям, изложенным в выше, вступивших в законную силу решений федерального антимонопольного органа, и (или) его территориальных органов, и (или) судов, а также получения уведомления (заявления) от организации, имеющей статус единой теплоснабжающей организации.

Уполномоченный орган обязан в течение 3 рабочих дней со дня принятия решения об утрате организацией статуса единой теплоснабжающей организации разместить на официальном сайте сообщение об этом, а также предложить теплоснабжающим и (или) теплосетевыми организациям подать заявку о присвоении им статуса единой теплоснабжающей организации.

Организация, утратившая статус единой теплоснабжающей организации по основаниям, приведенным в выше, обязана исполнять функции единой теплоснабжающей организации до присвоения другой организации статуса единой теплоснабжающей организации, а также передать организации, которой присвоен статус единой теплоснабжающей организации, информацию о потребителях тепловой энергии, в том числе имя (наименование) потребителя, место жительства (место нахождения), банковские реквизиты, а также информацию о состоянии расчетов с потребителем.

Границы зоны деятельности единой теплоснабжающей организации могут быть изменены в следующих случаях:

- подключение к системе теплоснабжения новых теплопотребляющих установок, источников тепловой энергии или тепловых сетей, или их отключение от системы теплоснабжения;
 - технологическое объединение или разделение систем теплоснабжения.

В настоящее время филиал ««Михайловский» КГУП «Примтеплоэнерго» отвечает требованиям критериев по определению единой теплоснабжающей организации в зоне централизованного теплоснабжения муниципального образования Сунятсенское сельское поселение.

15. РЕЕСТР МЕРОПРИЯТИЙ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ

- а. Перечень мероприятий по строительству, реконструкции, техническому перевооружению и (или) модернизации источников тепловой энергии:
 - Отсутствуют.
- b. Перечень мероприятий по строительству, реконструкции и техническому перевооружению тепловых сетей и сооружений на них:
 - Поддержание существующих теплосетей в исправном, рабочем состоянии.
- с. Перечень мероприятий, обеспечивающих переход от открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения:
- Мероприятия, обеспечивающие переход от открытых систем теплоснабжения (горячего водоснабжения) на закрытые системы горячего водоснабжения отсутствуют.

16. ЗАМЕЧАНИЯ И ПРЕДЛОЖЕНИЯ К ПРОЕКТУ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ

- а. Перечень всех замечаний и предложений, поступивших при разработке, утверждении и актуализации схемытеплоснабжения:
- Информация от администрации муниципального образования Сунятсенское сельское поселение для актуализации схемы теплоснабжения
- b. Ответы разработчиков проекта схемы теплоснабжения на замечания и предложения

17. СВОДНЫЙ ТОМ ИЗМЕНЕНИЙ, ВЫПОЛНЕННЫХ В ДОРАБОТАННОЙ И (ИЛИ) АКТУАЛИЗИРОВАННОЙ СХЕМЕ ТЕПЛОСНАБЖЕНИЯ